电负性
材料科学
阳极
共价键
离子键合
电化学
离子
化学键
电容器
电极
电子
化学物理
化学工程
纳米技术
电压
物理化学
有机化学
化学
工程类
物理
量子力学
作者
Chaofeng Liu,Changkun Zhang,Haoyu Fu,Xihui Nan,Guozhong Cao
标识
DOI:10.1002/aenm.201601127
摘要
A high‐performance anode material, MnNCN, is synthesized through a facile and low‐cost method. The relationship between electrochemical properties and chemical composition is explored on the scientific considerations that can provide an insight on designing expected materials. MnNCN with the long bonding length of 2.262 Å in MnN and weak electronegativity of 3.04 Pauling units in N leads to a lower charge/discharge potential than that of MnO owing to the character of chemical bonds transformed to covalent dominating from ionic dominating in MnO. Covalent character increases the ratio of sharing electrons that decreases the migration energy of electrons in electrochemical reaction, which enhances the reactive reversibility and stability of electrode material. MnNCN delivered a reversibly specific capacity of 385 mA h g −1 at 5 A g −1 in a Li‐ion half cell. Besides, a Li‐ion hybrid capacitor with a high voltage of 4 V presents energy and power densities of respective 103 Wh kg −1 and 8533 W kg −1 and cycles at 5 A g −1 without detectable degradation after 5000 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI