Memory retention – the synaptic stability versus plasticity dilemma

神经科学 突触可塑性 生物神经网络 突触重量 人工神经网络 理论(学习稳定性) 计算机科学 变质塑性 心理学 人工智能 机器学习 生物 生物化学 受体
作者
Wickliffe C. Abraham,Anthony Robins
出处
期刊:Trends in Neurosciences [Elsevier]
卷期号:28 (2): 73-78 被引量:316
标识
DOI:10.1016/j.tins.2004.12.003
摘要

Memory maintenance is widely believed to involve long-term retention of the synaptic weights that are set within relevant neural circuits during learning. However, despite recent exciting technical advances, it has not yet proved possible to confirm experimentally this intuitively appealing hypothesis. Artificial neural networks offer an alternative methodology as they permit continuous monitoring of individual connection weights during learning and retention. In such models, ongoing alterations in connection weights are required if a network is to retain previously stored material while learning new information. Thus, the duration of synaptic change does not necessarily define the persistence of a memory; rather, it is likely that a regulated balance of synaptic stability and synaptic plasticity is required for optimal memory retention in real neuronal circuits. Memory maintenance is widely believed to involve long-term retention of the synaptic weights that are set within relevant neural circuits during learning. However, despite recent exciting technical advances, it has not yet proved possible to confirm experimentally this intuitively appealing hypothesis. Artificial neural networks offer an alternative methodology as they permit continuous monitoring of individual connection weights during learning and retention. In such models, ongoing alterations in connection weights are required if a network is to retain previously stored material while learning new information. Thus, the duration of synaptic change does not necessarily define the persistence of a memory; rather, it is likely that a regulated balance of synaptic stability and synaptic plasticity is required for optimal memory retention in real neuronal circuits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
嗨害发布了新的文献求助20
1秒前
1秒前
SciGPT应助苻谷丝采纳,获得10
1秒前
高高的一笑完成签到,获得积分10
1秒前
我是老大应助周凡淇采纳,获得10
2秒前
Ava应助周凡淇采纳,获得10
2秒前
田様应助周凡淇采纳,获得10
2秒前
科目三应助周凡淇采纳,获得10
2秒前
SciGPT应助周凡淇采纳,获得10
2秒前
zho应助周凡淇采纳,获得10
2秒前
完美的天空应助周凡淇采纳,获得10
2秒前
汉堡包应助周凡淇采纳,获得10
2秒前
彭于晏应助周凡淇采纳,获得10
2秒前
zho应助周凡淇采纳,获得10
2秒前
吴涛发布了新的文献求助10
2秒前
凌云客发布了新的文献求助10
5秒前
kiterunner发布了新的文献求助10
6秒前
迷你的怀莲完成签到 ,获得积分10
6秒前
6秒前
赘婿应助谦让月饼采纳,获得10
7秒前
YUE给YUE的求助进行了留言
7秒前
7秒前
小西贝发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
Echodeng完成签到,获得积分10
11秒前
杨坤发布了新的文献求助10
12秒前
12秒前
13秒前
wtc发布了新的文献求助10
16秒前
Lx发布了新的文献求助10
16秒前
17秒前
情怀应助xushanqi采纳,获得10
19秒前
科研通AI2S应助Chen采纳,获得30
20秒前
20秒前
22秒前
无响应完成签到 ,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376