四膜虫
生物
基因
细胞生物学
微生物学
生物化学
作者
Lei Feng,Chengjie Fu,Dan Yuan,Wei Miao
标识
DOI:10.1016/j.aquatox.2014.02.004
摘要
Analysis of metabolic mechanisms of dichlorodiphenyltrichloroethane (DDT) accumulation and degradation in microorganisms, which could be used to reduce its hazard to higher organisms at the higher in the food chain, have not been investigated. Robust resistance to DDT (grows well in 256 mg/L DDT) and a surprising ability to degrade DDT (more than 70% DDT within 4 h) were found in the ciliated protozoan Tetrahymena thermophila. A P450 gene (CYP5013C2) was found to respond specifically to DDT treatment. In the presence of 256 mg/L DDT, cells with overexpressing CYP5013C2 (p450-OE) grew faster and degraded DDT more efficiently than wild-type (WT) cells, while cells with CYP5013C2 partially knocked down (p450-KD) grew slower and exhibited reduced ability to degrade DDT compared to WT cells. Both dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) were detected in cells after exposure to DDT, and the concentration of DDD in the p450-OE strain gradually decreased from 0.5 to 4 h. Thus, we argue that this P450 gene (CYP5013C2), by efficiently degrading DDT to DDD, is associated with robust resistance to DDT in Tetrahymena, and that a strain overexpressing this gene has the potential to serve as bioreactor that degrades environmental DDT.
科研通智能强力驱动
Strongly Powered by AbleSci AI