The Histone Acetyltransferase GcnE (GCN5) Plays a Central Role in the Regulation ofAspergillusAsexual Development

生物 组蛋白乙酰转移酶 遗传学 组蛋白 乙酰转移酶 乙酰化 曲霉 细胞生物学 基因
作者
David Cánovas,Ana T. Marcos,Agnieszka Gacek‐Matthews,María Sánchez Ramos,Gabriel Gutiérrez,Yazmid Reyes-Domínguez,Joseph Strauss
出处
期刊:Genetics [Oxford University Press]
卷期号:197 (4): 1175-1189 被引量:72
标识
DOI:10.1534/genetics.114.165688
摘要

Abstract Acetylation of histones is a key regulatory mechanism of gene expression in eukaryotes. GcnE is an acetyltransferase of Aspergillus nidulans involved in the acetylation of histone H3 at lysine 9 and lysine 14. Previous works have demonstrated that deletion of gcnE results in defects in primary and secondary metabolism. Here we unveil the role of GcnE in development and show that a ∆gcnE mutant strain has minor growth defects but is impaired in normal conidiophore development. No signs of conidiation were found after 3 days of incubation, and immature and aberrant conidiophores were found after 1 week of incubation. Centroid linkage clustering and principal component (PC) analysis of transcriptomic data suggest that GcnE occupies a central position in Aspergillus developmental regulation and that it is essential for inducing conidiation genes. GcnE function was found to be required for the acetylation of histone H3K9/K14 at the promoter of the master regulator of conidiation, brlA, as well as at the promoters of the upstream developmental regulators of conidiation flbA, flbB, flbC, and flbD (fluffy genes). However, analysis of the gene expression of brlA and the fluffy genes revealed that the lack of conidiation originated in a complete absence of brlA expression in the ∆gcnE strain. Ectopic induction of brlA from a heterologous alcA promoter did not remediate the conidiation defects in the ∆gcnE strain, suggesting that additional GcnE-mediated mechanisms must operate. Therefore, we conclude that GcnE is the only nonessential histone modifier with a strong role in fungal development found so far.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
啊哈哈哈完成签到,获得积分10
2秒前
2秒前
弄啥嘞昂应助长情的月光采纳,获得10
3秒前
4秒前
Hayden_peng发布了新的文献求助30
4秒前
zbb123发布了新的文献求助30
5秒前
6秒前
6秒前
整齐新儿发布了新的文献求助10
6秒前
7秒前
orixero应助Ying采纳,获得10
7秒前
在水一方应助waa采纳,获得10
7秒前
8秒前
li发布了新的文献求助10
10秒前
牧紊完成签到 ,获得积分10
10秒前
李华发布了新的文献求助50
11秒前
长情的月光完成签到,获得积分10
12秒前
12秒前
13秒前
毛豆应助Mojee采纳,获得10
13秒前
13秒前
今后应助整齐新儿采纳,获得10
13秒前
13秒前
阳光下的味道完成签到,获得积分10
14秒前
Fascinate完成签到,获得积分10
15秒前
大模型应助清爽的向秋采纳,获得10
15秒前
15秒前
16秒前
清新发布了新的文献求助10
16秒前
李爱国应助大力沛萍采纳,获得10
17秒前
Irene完成签到,获得积分10
18秒前
SHINING发布了新的文献求助10
18秒前
JamesPei应助zhjp采纳,获得10
18秒前
傻芙芙的完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
可爱的函函应助刘艺珍采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663