膜
纳米纤维
材料科学
化学工程
渗透汽化
纳米孔
过滤(数学)
介孔材料
蒸发
纳米技术
渗透
有机化学
化学
数学
催化作用
工程类
物理
统计
热力学
生物化学
作者
Xinsheng Peng,Izumi Ichinose
标识
DOI:10.1002/adfm.201002628
摘要
Abstract Ultrathin β‐MnOOH nanofibers can be produced on a large scale via a green‐chemical method using an aqueous solution of very dilute Mn(NO 3 ) 2 and aminoethanol at room temperature. High‐magnification electron microscopy demonstrates that the β‐MnOOH nanofibers are 3–5 nm thin and up to 1 micrometer long and the nanofibers are parallel assembled into bundles with an average diameter of 25 nm. By a filtration process, ultrathin mesoporous membranes with strong mechanical, thermal, and chemical stabilities are prepared from the β‐MnOOH nanofiber bundles. The membranes can separate 10‐nm nanoparticles from water at a flux of 15120 L m −2 ·h −1 ·bar −1 , which was 2–3 times higher than that of commercial membranes with similar rejection properties. Based on the Young‐Laplace equation, β‐MnOOH nanofiber/polydimethylsiloxane composite membranes are developed through a novel downstream‐side evaporation process. From nanoporous to dense separation membranes can be achieved by optimizing the experimental conditions. The membranes show desirable separation performance for proteins, ethanol/water mixtures, and gases. The synthesis method of β‐MnOOH nanofibers is simple and environmentally friendly, and it is easily scalable for industry and applicable to other metal oxide systems. These composite membranes constitute a significant contribution to advanced separation technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI