The Importance of A Priori Sample Size Estimation in Strength and Conditioning Research

样本量测定 统计能力 无效假设 统计 样品(材料) 计算机科学 软件 统计假设检验 实验设计 先验与后验 功率(物理) 可靠性工程 计量经济学 数学 工程类 哲学 化学 认识论 色谱法 程序设计语言 物理 量子力学
作者
Travis W. Beck
出处
期刊:Journal of Strength and Conditioning Research [Ovid Technologies (Wolters Kluwer)]
卷期号:27 (8): 2323-2337 被引量:441
标识
DOI:10.1519/jsc.0b013e318278eea0
摘要

The statistical power, or sensitivity of an experiment, is defined as the probability of rejecting a false null hypothesis. Only 3 factors can affect statistical power: (a) the significance level (α), (b) the magnitude or size of the treatment effect (effect size), and (c) the sample size (n). Of these 3 factors, only the sample size can be manipulated by the investigator because the significance level is usually selected before the study, and the effect size is determined by the effectiveness of the treatment. Thus, selection of an appropriate sample size is one of the most important components of research design but is often misunderstood by beginning researchers. The purpose of this tutorial is to describe procedures for estimating sample size for a variety of different experimental designs that are common in strength and conditioning research. Emphasis is placed on selecting an appropriate effect size because this step fully determines sample size when power and the significance level are fixed. There are many different software packages that can be used for sample size estimation. However, I chose to describe the procedures for the G*Power software package (version 3.1.4) because this software is freely downloadable and capable of estimating sample size for many of the different statistical tests used in strength and conditioning research. Furthermore, G*Power provides a number of different auxiliary features that can be useful for researchers when designing studies. It is my hope that the procedures described in this article will be beneficial for researchers in the field of strength and conditioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Taki完成签到 ,获得积分10
刚刚
刚刚
刚刚
battle王发布了新的文献求助10
1秒前
炙热静白发布了新的文献求助10
2秒前
蔚蓝完成签到,获得积分10
2秒前
2秒前
Blackrainbow发布了新的文献求助10
2秒前
自由保温杯完成签到,获得积分10
2秒前
Shirley发布了新的文献求助10
3秒前
Purple完成签到,获得积分10
3秒前
cmcm完成签到,获得积分10
3秒前
3秒前
3秒前
王晓关注了科研通微信公众号
3秒前
一一完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
chen完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
狂野若云完成签到,获得积分20
5秒前
学术蝗虫完成签到,获得积分20
5秒前
阿泽发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
Angelyang完成签到,获得积分10
5秒前
qing完成签到,获得积分10
6秒前
格子完成签到,获得积分10
6秒前
6秒前
天赐殊荣完成签到,获得积分10
6秒前
6秒前
qq完成签到,获得积分10
7秒前
欢喜的火龙果完成签到,获得积分10
7秒前
十一完成签到,获得积分10
7秒前
lala完成签到,获得积分10
8秒前
tt完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699126
求助须知:如何正确求助?哪些是违规求助? 5129127
关于积分的说明 15224490
捐赠科研通 4854057
什么是DOI,文献DOI怎么找? 2604442
邀请新用户注册赠送积分活动 1555961
关于科研通互助平台的介绍 1514252