The Importance of A Priori Sample Size Estimation in Strength and Conditioning Research

样本量测定 统计能力 无效假设 统计 样品(材料) 计算机科学 软件 统计假设检验 实验设计 先验与后验 功率(物理) 可靠性工程 计量经济学 数学 工程类 哲学 化学 认识论 色谱法 程序设计语言 物理 量子力学
作者
Travis W. Beck
出处
期刊:Journal of Strength and Conditioning Research [Ovid Technologies (Wolters Kluwer)]
卷期号:27 (8): 2323-2337 被引量:441
标识
DOI:10.1519/jsc.0b013e318278eea0
摘要

The statistical power, or sensitivity of an experiment, is defined as the probability of rejecting a false null hypothesis. Only 3 factors can affect statistical power: (a) the significance level (α), (b) the magnitude or size of the treatment effect (effect size), and (c) the sample size (n). Of these 3 factors, only the sample size can be manipulated by the investigator because the significance level is usually selected before the study, and the effect size is determined by the effectiveness of the treatment. Thus, selection of an appropriate sample size is one of the most important components of research design but is often misunderstood by beginning researchers. The purpose of this tutorial is to describe procedures for estimating sample size for a variety of different experimental designs that are common in strength and conditioning research. Emphasis is placed on selecting an appropriate effect size because this step fully determines sample size when power and the significance level are fixed. There are many different software packages that can be used for sample size estimation. However, I chose to describe the procedures for the G*Power software package (version 3.1.4) because this software is freely downloadable and capable of estimating sample size for many of the different statistical tests used in strength and conditioning research. Furthermore, G*Power provides a number of different auxiliary features that can be useful for researchers when designing studies. It is my hope that the procedures described in this article will be beneficial for researchers in the field of strength and conditioning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syy080837发布了新的文献求助10
刚刚
Accept完成签到,获得积分10
刚刚
在水一方应助自觉的涵易采纳,获得10
1秒前
田兆鹏完成签到,获得积分10
2秒前
cxt517完成签到,获得积分10
2秒前
NexusExplorer应助吐丝麵包采纳,获得10
2秒前
interest-li完成签到,获得积分10
2秒前
3秒前
moonpie发布了新的文献求助10
3秒前
科研通AI2S应助ky幻影采纳,获得10
3秒前
天天快乐应助虚幻豌豆采纳,获得10
3秒前
科学完成签到,获得积分20
4秒前
看看文献发布了新的文献求助10
4秒前
4秒前
5秒前
OhoOu完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
interest-li发布了新的文献求助30
5秒前
roy_chiang完成签到,获得积分0
5秒前
haozai完成签到,获得积分10
5秒前
lj发布了新的文献求助10
6秒前
英姑应助Jasen采纳,获得10
6秒前
7秒前
7秒前
wangsai0532完成签到,获得积分10
7秒前
8秒前
东方三问完成签到,获得积分10
8秒前
18707979012完成签到,获得积分20
8秒前
8秒前
思源应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得20
9秒前
王大橘发布了新的文献求助10
9秒前
大个应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
科研通AI6应助zg采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482