Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity

自愈水凝胶 材料科学 韧性 离子键合 生物相容性 粘弹性 聚合物 刚度 软质材料 弹性(物理) 复合材料 纳米技术 高分子化学 化学 离子 冶金 有机化学
作者
Tao Lin Sun,Takayuki Kurokawa,Shinya Kuroda,Abu Bin Ihsan,Taigo Akasaki,Koshiro Sato,Md. Anamul Haque,Tasuku Nakajima,Jian Ping Gong
出处
期刊:Nature Materials [Springer Nature]
卷期号:12 (10): 932-937 被引量:1814
标识
DOI:10.1038/nmat3713
摘要

Hydrogels attract great attention as biomaterials as a result of their soft and wet nature, similar to that of biological tissues. Recent inventions of several tough hydrogels show their potential as structural biomaterials, such as cartilage. Any given application, however, requires a combination of mechanical properties including stiffness, strength, toughness, damping, fatigue resistance and self-healing, along with biocompatibility. This combination is rarely realized. Here, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and viscoelastic hydrogels with multiple mechanical properties. The randomness makes ionic bonds of a wide distribution of strength. The strong bonds serve as permanent crosslinks, imparting elasticity, whereas the weak bonds reversibly break and re-form, dissipating energy. These physical hydrogels of supramolecular structure can be tuned to change multiple mechanical properties over wide ranges by using diverse ionic combinations. This polyampholyte approach is synthetically simple and dramatically increases the choice of tough hydrogels for applications. Polyampholyte hydrogels synthesized from the random polymerization of oppositely charged ionic monomers are shown to be mechanically tough and highly viscoelastic. Strong ionic bonds within the gel act as permanent crosslinks and weaker ionic bonds reversibly break and re-form, enhancing the fracture resistance, shock absorbance and self-healing properties of the materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助外向从灵采纳,获得10
1秒前
一只生物狗完成签到,获得积分10
1秒前
Hello应助echolan采纳,获得10
2秒前
2秒前
安静的雨发布了新的文献求助10
2秒前
2秒前
天天快乐应助苹果酸奶采纳,获得10
2秒前
YANG901完成签到,获得积分10
3秒前
酷波er应助yanyanyanyan采纳,获得10
3秒前
4秒前
doudou发布了新的文献求助10
4秒前
慕青应助Zhang采纳,获得10
4秒前
popo6150完成签到,获得积分10
4秒前
能力越小责任越小完成签到,获得积分10
4秒前
cripple完成签到,获得积分10
5秒前
碧蓝的曼岚完成签到,获得积分10
5秒前
5秒前
buno应助古怪小枫采纳,获得10
5秒前
5秒前
躺平才有生活完成签到,获得积分10
6秒前
6秒前
顶刊我来了完成签到,获得积分10
6秒前
搜集达人应助果汁采纳,获得10
7秒前
7秒前
Hover发布了新的文献求助10
7秒前
传奇3应助mirror采纳,获得30
7秒前
yaqin@9909发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
星辰完成签到,获得积分10
9秒前
NK001完成签到,获得积分10
9秒前
缘起缘灭完成签到,获得积分10
10秒前
CipherSage应助萌道采纳,获得10
10秒前
10秒前
天衍四九完成签到,获得积分10
10秒前
北极熊不吃牙膏完成签到,获得积分10
11秒前
balmy完成签到 ,获得积分10
11秒前
11秒前
Mid发布了新的文献求助20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759