Endocytic proteins drive vesicle growth via instability in high membrane tension environment

小泡 细胞生物学 肌动蛋白 内吞循环 细胞骨架 生物物理学 生物 内吞作用 化学 生物化学 细胞
作者
Nikhil Walani,Jennifer Torres,Ashutosh Agrawal
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:112 (12) 被引量:102
标识
DOI:10.1073/pnas.1418491112
摘要

Clathrin-mediated endocytosis (CME) is a key pathway for transporting cargo into cells via membrane vesicles; it plays an integral role in nutrient import, signal transduction, neurotransmission, and cellular entry of pathogens and drug-carrying nanoparticles. Because CME entails substantial local remodeling of the plasma membrane, the presence of membrane tension offers resistance to bending and hence, vesicle formation. Experiments show that in such high-tension conditions, actin dynamics is required to carry out CME successfully. In this study, we build on these pioneering experimental studies to provide fundamental mechanistic insights into the roles of two key endocytic proteins-namely, actin and BAR proteins-in driving vesicle formation in high membrane tension environment. Our study reveals an actin force-induced "snap-through instability" that triggers a rapid shape transition from a shallow invagination to a highly invaginated tubular structure. We show that the association of BAR proteins stabilizes vesicles and induces a milder instability. In addition, we present a rather counterintuitive role of BAR depolymerization in regulating the shape evolution of vesicles. We show that the dissociation of BAR proteins, supported by actin-BAR synergy, leads to considerable elongation and squeezing of vesicles. Going beyond the membrane geometry, we put forth a stress-based perspective for the onset of vesicle scission and predict the shapes and composition of detached vesicles. We present the snap-through transition and the high in-plane stress as possible explanations for the intriguing direct transformation of broad and shallow invaginations into detached vesicles in BAR mutant yeast cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
喝一口奶茶完成签到,获得积分10
2秒前
3秒前
4秒前
6秒前
在水一方应助甜甜采纳,获得10
6秒前
ruochenzu发布了新的文献求助10
6秒前
伍寒烟发布了新的文献求助10
9秒前
TBI完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
Jasper应助雪顶蛋糕采纳,获得10
12秒前
12秒前
所所应助小宋采纳,获得10
12秒前
Attendre完成签到 ,获得积分10
13秒前
13秒前
含糊的文涛完成签到,获得积分10
13秒前
14秒前
15秒前
111完成签到 ,获得积分10
15秒前
邵莞发布了新的文献求助10
15秒前
danna发布了新的文献求助10
15秒前
十点差一分关注了科研通微信公众号
16秒前
provin发布了新的文献求助10
16秒前
17秒前
水牛发布了新的文献求助10
17秒前
追寻的鞯发布了新的文献求助10
18秒前
sxp1031发布了新的文献求助10
19秒前
ding应助ylh采纳,获得10
20秒前
猫猫统治世界完成签到,获得积分10
22秒前
22秒前
23秒前
provin完成签到,获得积分10
24秒前
25秒前
赵哈哈哈完成签到,获得积分20
26秒前
Ava应助水牛采纳,获得10
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309