Endocytic proteins drive vesicle growth via instability in high membrane tension environment

小泡 细胞生物学 肌动蛋白 内吞循环 细胞骨架 生物物理学 生物 内吞作用 化学 生物化学 细胞
作者
Nikhil Walani,Jennifer Torres,Ashutosh Agrawal
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:112 (12) 被引量:102
标识
DOI:10.1073/pnas.1418491112
摘要

Clathrin-mediated endocytosis (CME) is a key pathway for transporting cargo into cells via membrane vesicles; it plays an integral role in nutrient import, signal transduction, neurotransmission, and cellular entry of pathogens and drug-carrying nanoparticles. Because CME entails substantial local remodeling of the plasma membrane, the presence of membrane tension offers resistance to bending and hence, vesicle formation. Experiments show that in such high-tension conditions, actin dynamics is required to carry out CME successfully. In this study, we build on these pioneering experimental studies to provide fundamental mechanistic insights into the roles of two key endocytic proteins-namely, actin and BAR proteins-in driving vesicle formation in high membrane tension environment. Our study reveals an actin force-induced "snap-through instability" that triggers a rapid shape transition from a shallow invagination to a highly invaginated tubular structure. We show that the association of BAR proteins stabilizes vesicles and induces a milder instability. In addition, we present a rather counterintuitive role of BAR depolymerization in regulating the shape evolution of vesicles. We show that the dissociation of BAR proteins, supported by actin-BAR synergy, leads to considerable elongation and squeezing of vesicles. Going beyond the membrane geometry, we put forth a stress-based perspective for the onset of vesicle scission and predict the shapes and composition of detached vesicles. We present the snap-through transition and the high in-plane stress as possible explanations for the intriguing direct transformation of broad and shallow invaginations into detached vesicles in BAR mutant yeast cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
生动的煎蛋完成签到,获得积分10
1秒前
NexusExplorer应助marinemiao采纳,获得10
1秒前
CXS完成签到,获得积分10
2秒前
2秒前
2秒前
小郭完成签到,获得积分10
2秒前
2秒前
123发布了新的文献求助10
3秒前
NN123完成签到 ,获得积分10
3秒前
FFFFFFF应助艺玲采纳,获得10
4秒前
袁访天发布了新的文献求助10
4秒前
辇道增七完成签到,获得积分10
4秒前
4秒前
幽默的太阳完成签到 ,获得积分10
5秒前
5秒前
Nininni完成签到,获得积分10
5秒前
Tao完成签到,获得积分10
5秒前
5秒前
zqh发布了新的文献求助10
5秒前
5秒前
虫虫发布了新的文献求助10
6秒前
无情豪英完成签到 ,获得积分10
6秒前
6秒前
6秒前
完美世界应助sansan采纳,获得10
6秒前
Inahurry发布了新的文献求助10
7秒前
HopeStar发布了新的文献求助10
7秒前
华仔应助科研狗采纳,获得10
7秒前
田様应助Liu采纳,获得10
8秒前
CH完成签到,获得积分10
8秒前
核桃发布了新的文献求助10
8秒前
秣旎完成签到,获得积分10
8秒前
善学以致用应助明天更好采纳,获得10
8秒前
FashionBoy应助remimazolam采纳,获得10
8秒前
sunzhiyu233发布了新的文献求助10
8秒前
我行我素发布了新的文献求助10
9秒前
tengy完成签到,获得积分10
9秒前
斯文败类应助dudu采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740