计算机科学
人工智能
模式识别(心理学)
典型相关
分类
分类器(UML)
线性子空间
匹配(统计)
子空间拓扑
机器学习
计算机视觉
数学
几何学
统计
作者
Tae‐Kyun Kim,Roberto Cipolla
标识
DOI:10.1109/tpami.2008.167
摘要
This paper addresses a spatiotemporal pattern recognition problem. The main purpose of this study is to find a right representation and matching of action video volumes for categorization. A novel method is proposed to measure video-to-video volume similarity by extending Canonical Correlation Analysis (CCA), a principled tool to inspect linear relations between two sets of vectors, to that of two multiway data arrays (or tensors). The proposed method analyzes video volumes as inputs avoiding the difficult problem of explicit motion estimation required in traditional methods and provides a way of spatiotemporal pattern matching that is robust to intraclass variations of actions. The proposed matching is demonstrated for action classification by a simple Nearest Neighbor classifier. We, moreover, propose an automatic action detection method, which performs 3D window search over an input video with action exemplars. The search is speeded up by dynamic learning of subspaces in the proposed CCA. Experiments on a public action data set (KTH) and a self-recorded hand gesture data showed that the proposed method is significantly better than various state-of-the-art methods with respect to accuracy. Our method has low time complexity and does not require any major tuning parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI