肌丝
胞浆
转移酶
细胞质
生物
化学
内科学
细胞内
内分泌学
生物化学
心肌细胞
血管平滑肌
细胞生物学
平滑肌
酶
医学
作者
Yoshihiro Akimoto,Lisa K. Kreppel,Hiroshi Hirano,Gerald W. Hart
标识
DOI:10.1006/abbi.2001.2331
摘要
Hyperglycemia leads to vascular disease specific to diabetes mellitus. This pathology, which results from abnormal proliferation of smooth muscle cells in arterial walls, may lead to cataract, renal failure, and atherosclerosis. The hexosamine biosynthetic pathway is exquisitely responsive to glucose concentration and plays an important role in glucose-induced insulin resistance. UDP-GlcNAc: polypeptide O-N-acetylglucosaminyltransferase (O-GlcNAc transferase; OGTase) catalyzes the O-linked attachment of single GlcNAc moieties to serine and threonine residues on many cytosolic or nuclear proteins. Polyclonal antibody against OGTase was used to examine the expression of OGTase in rat aorta and aortic smooth muscle (RASM) cells. OGTase enzymatic activity and expression at the mRNA and protein levels were determined in RASM cells cultured at normal (5 mM) and at high (20 mM) glucose concentrations. OGTase mRNA and protein are expressed in both endothelial cells and smooth muscle cells in the aorta of normal rats. In both cell types, the nucleus is intensely stained, while the cytoplasm stains diffusely. Immunoelectron microscopy shows that OGTase is localized to euchromatin and around the myofilaments of smooth muscle cells. In RASM cells grown in 5 mM glucose, OGTase is also located mainly in the nucleus. Hyperglycemic RASM cells also display a relative increase in OGTase's p78 subunit and an overall increase protein and activity for OGTase. Biochemical analyses show that hyperglycemia qualitatively and quantitatively alters the glycosylation or expression of many O-GlcNAc-modified proteins in the nucleus. These results suggest that the abnormal O-GlcNAc modification of intracellular proteins may be involved in glucose toxicity to vascular tissues.
科研通智能强力驱动
Strongly Powered by AbleSci AI