Towards Evaluating the Robustness of Neural Networks

对抗制 稳健性(进化) 计算机科学 人工神经网络 深层神经网络 人工智能 机器学习 对抗性机器学习 可转让性 蒸馏 生物化学 基因 有机化学 化学
作者
Nicholas Carlini,David Wagner
出处
期刊:IEEE Symposium on Security and Privacy 被引量:5257
标识
DOI:10.1109/sp.2017.49
摘要

Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible to find a new input x' that is similar to x but classified as t. This makes it difficult to apply neural networks in security-critical areas. Defensive distillation is a recently proposed approach that can take an arbitrary neural network, and increase its robustness, reducing the success rate of current attacks' ability to find adversarial examples from 95% to 0.5%. In this paper, we demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability. Our attacks are tailored to three distance metrics used previously in the literature, and when compared to previous adversarial example generation algorithms, our attacks are often much more effective (and never worse). Furthermore, we propose using high-confidence adversarial examples in a simple transferability test we show can also be used to break defensive distillation. We hope our attacks will be used as a benchmark in future defense attempts to create neural networks that resist adversarial examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
豆豆完成签到,获得积分10
1秒前
Harry发布了新的文献求助10
1秒前
萌龙发布了新的文献求助10
1秒前
1秒前
SYLH应助陈椅子的求学采纳,获得50
2秒前
2秒前
2秒前
2秒前
陈佳发布了新的文献求助10
2秒前
朱建军应助Carly采纳,获得10
3秒前
虚幻的水之完成签到,获得积分10
3秒前
黑黑完成签到,获得积分20
4秒前
感叹号完成签到 ,获得积分10
4秒前
4秒前
甜美的瑾瑜完成签到,获得积分10
4秒前
Han发布了新的文献求助10
5秒前
孙了了发布了新的文献求助10
5秒前
6秒前
6秒前
桐桐应助冯习采纳,获得10
7秒前
YMM完成签到,获得积分10
7秒前
sweat发布了新的文献求助10
7秒前
8秒前
Harry完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
斯文败类应助178181采纳,获得10
10秒前
nzxnzx完成签到,获得积分10
11秒前
11秒前
11秒前
nostalgia发布了新的文献求助10
11秒前
低调小狗完成签到,获得积分10
12秒前
12秒前
情堪隽永不如故完成签到,获得积分10
12秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113