Automated Grading System Using Natural Language Processing

分级(工程) 计算机科学 自然语言处理 人工智能 自然语言 字错误率 情报检索 模式匹配 数据挖掘 工程类 土木工程
作者
Amit Rokade,Bhushan Suresh Patil,Sana Rajani,Surabhi Revandkar,Rajashree Shedge
标识
DOI:10.1109/icicct.2018.8473170
摘要

Most of the articles which cover automated grading consider keyword matching to be a crucial aspect while grading answers. Even though these are important, it is human to forget several uncommon terms and instead replace them with words that have a similar meaning. In this paper, a solution to grading of papers of theory based subjects is obtained where in Automatic Paper Grading will be performed using Natural Language Processing. Machine learning techniques like Semantic Analysis will be adopted. As a single answer can be presented in a number of ways by different students, matching keywords is inefficient. That is why, using ontology, extraction of words and their synonyms related to the domain is done which makes the evaluation process holistic as presence of keywords, synonyms, the right word combination and coverage of concepts can now be checked. The above mentioned techniques will be implemented with Ontology and will be tested on common input data consisting of technical answers. The results will be analyzed and an unbiased, high accuracy automated grading system for a theory based subject will be obtained with very little error rate which is comparable to a differential human-to-human error rate. The algorithm is designed based on the responses collected during the survey conducted amongst teachers regarding their parameters when correcting papers manually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助懦弱的妍采纳,获得10
刚刚
和发财完成签到,获得积分10
1秒前
实验室的亡灵完成签到,获得积分10
1秒前
shuaibijiang完成签到,获得积分10
2秒前
ECG发布了新的文献求助10
3秒前
3秒前
syne完成签到,获得积分10
3秒前
bkagyin应助乐乐采纳,获得10
3秒前
Annnn完成签到,获得积分10
4秒前
huohuo143完成签到,获得积分10
5秒前
梓沐完成签到,获得积分10
5秒前
小五屁孩儿完成签到,获得积分10
5秒前
栗子完成签到,获得积分10
5秒前
6秒前
乘一完成签到,获得积分10
6秒前
duoduo完成签到,获得积分10
6秒前
pragmatic完成签到,获得积分10
6秒前
菠萝完成签到 ,获得积分10
6秒前
tracer发布了新的文献求助10
7秒前
呼叫554发布了新的文献求助10
8秒前
misha991应助梓沐采纳,获得20
8秒前
zhangzhangzhang完成签到 ,获得积分10
9秒前
9秒前
9秒前
biubiu完成签到,获得积分10
10秒前
王灿灿应助科研通管家采纳,获得10
12秒前
123应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
12秒前
Ava应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
冯冯完成签到 ,获得积分10
12秒前
快乐的晓刚完成签到,获得积分10
13秒前
mhs发布了新的文献求助10
13秒前
乐乐发布了新的文献求助10
14秒前
五斤老陈醋完成签到,获得积分10
14秒前
卡乐瑞咩吹可完成签到,获得积分10
14秒前
ding应助程大程采纳,获得10
15秒前
Vintage完成签到,获得积分10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443