计算机科学
隐写分析技术
隐写术
人工智能
残余物
模式识别(心理学)
计算机视觉
算法
图像(数学)
作者
Mehdi Boroumand,Mo Chen,Jessica Fridrich
标识
DOI:10.1109/tifs.2018.2871749
摘要
Steganography detectors built as deep convolutional neural networks have firmly established themselves as superior to the previous detection paradigm - classifiers based on rich media models. Existing network architectures, however, still contain elements designed by hand, such as fixed or constrained convolutional kernels, heuristic initialization of kernels, the thresholded linear unit that mimics truncation in rich models, quantization of feature maps, and awareness of JPEG phase. In this work, we describe a deep residual architecture designed to minimize the use of heuristics and externally enforced elements that is universal in the sense that it provides state-of-the-art detection accuracy for both spatial-domain and JPEG steganography. The key part of the proposed architecture is a significantly expanded front part of the detector that "computes noise residuals" in which pooling has been disabled to prevent suppression of the stego signal. Extensive experiments show the superior performance of this network with a significant improvement, especially in the JPEG domain. Further performance boost is observed by supplying the selection channel as a second channel.
科研通智能强力驱动
Strongly Powered by AbleSci AI