Exploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict for recurrence and suvival in cervical cancer

人工智能 医学 直方图 核医学 宫颈癌 灰度级 特征(语言学) 癌症 模式识别(心理学) 计算机科学 内科学 图像(数学) 语言学 哲学
作者
Asha Leisser,Marko Grahovac,László Papp,Thomas Nakuz,Marcus Hacker,Thomas Beyer,Marzieh Nejabat,Alexander Haug
摘要

387 Aim: The aim of this study was to identify relevant features on 2-deoxy-2-(18F)fluoro-D-glucose PET/CT ([18F] FDG-PET/CT) to predict for recurrence (R) and overall survival (OS) in cervical cancer patients. Methods: 63 treatment naive cervical cancer patients, who had a positive [18F] FDG-PET/CT from 12/2008 to 12/2015 were included in this analysis. The primary tumours were delineated on the PET images using semi-automatic VOIs, followed by feature extraction. Each tumour was characterized by 118 features including in vivo intensity, histogram, shape, textural and joint fusion features. Identification of highly-correlating features was performed by the utilization of ensemble machine learning approaches in a multi-fold training scheme. Overall 150 Monte Carlo (MC) folds were established. In each MC fold 80% of the original data was randomly selected. In each MC fold 8 machine learning (ML) exploratory analysis was performed as presented in Papp et al. The individual datasets for these ML executions was selected from the given MC subset by bootsrapping. The final feature weights were determined by averaging the 1200 (150x8) weights determined by ML. Results: In the studied cohort 22 patients had a recurrence, 12 died. Mean time to treatment failure (TTF) was 14.3 months (range: 0-73 mo) and mean OS was 40.6 mo (range: 0-100 mo). The three highest weighted parameters were the CT-based textural features Low gray level zone emphasis (GLZSM; 0.083) and Small zone low gray emphasis (GLZSM; 0.080) as well as the joint fusion features Sum entropy (0.057) when predicting recurrence. For survival prediction the three highest weighted parameters were CT-based textural features maximum probability and Sum entropy of Gray-level co-occurrence matrix (GLCM-MP: 0.179; GLCM-SE: 0.10), as well as the PET-based minimum intensity feature (0,057). Conclusions: These preliminary results of our exploratory analysis demonstrate that textural and joint fusion features obtained by supervised ML are a valuable option for predicting recurrence and overall survival in cervical cancer. However further analysis with a bigger patient population is needed and still ongoing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
BareBear应助这家伙采纳,获得10
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
handsome发布了新的文献求助10
5秒前
7秒前
annananana完成签到,获得积分10
7秒前
李卓航发布了新的文献求助20
8秒前
村长热爱美丽完成签到 ,获得积分10
9秒前
10秒前
山水之乐发布了新的文献求助10
10秒前
尔安完成签到,获得积分10
11秒前
彭于晏应助Fen3i采纳,获得10
13秒前
lunwenqigai发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
月星发布了新的文献求助10
15秒前
学徒发布了新的文献求助10
16秒前
东东完成签到 ,获得积分10
17秒前
TOGETHERXYZ完成签到,获得积分20
17秒前
20秒前
20秒前
刘星星完成签到 ,获得积分10
20秒前
阳光书芹完成签到,获得积分10
21秒前
cai完成签到,获得积分10
21秒前
lunwenqigai完成签到,获得积分10
25秒前
solong1213发布了新的文献求助10
25秒前
星辰大海应助路边采纳,获得10
25秒前
Akim应助Tethys采纳,获得10
26秒前
隐形曼青应助元正采纳,获得10
26秒前
keyanniniz完成签到,获得积分10
28秒前
28秒前
卡皮巴拉完成签到,获得积分10
28秒前
CipherSage应助shinn采纳,获得10
29秒前
31秒前
自信的灵薇完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
小巧初露完成签到 ,获得积分10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663721
求助须知:如何正确求助?哪些是违规求助? 4852264
关于积分的说明 15105525
捐赠科研通 4822005
什么是DOI,文献DOI怎么找? 2581120
邀请新用户注册赠送积分活动 1535274
关于科研通互助平台的介绍 1493652