Exploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict for recurrence and suvival in cervical cancer

人工智能 医学 直方图 核医学 宫颈癌 灰度级 特征(语言学) 癌症 模式识别(心理学) 计算机科学 内科学 图像(数学) 语言学 哲学
作者
Asha Leisser,Marko Grahovac,László Papp,Thomas Nakuz,Marcus Hacker,Thomas Beyer,Marzieh Nejabat,Alexander Haug
摘要

387 Aim: The aim of this study was to identify relevant features on 2-deoxy-2-(18F)fluoro-D-glucose PET/CT ([18F] FDG-PET/CT) to predict for recurrence (R) and overall survival (OS) in cervical cancer patients. Methods: 63 treatment naive cervical cancer patients, who had a positive [18F] FDG-PET/CT from 12/2008 to 12/2015 were included in this analysis. The primary tumours were delineated on the PET images using semi-automatic VOIs, followed by feature extraction. Each tumour was characterized by 118 features including in vivo intensity, histogram, shape, textural and joint fusion features. Identification of highly-correlating features was performed by the utilization of ensemble machine learning approaches in a multi-fold training scheme. Overall 150 Monte Carlo (MC) folds were established. In each MC fold 80% of the original data was randomly selected. In each MC fold 8 machine learning (ML) exploratory analysis was performed as presented in Papp et al. The individual datasets for these ML executions was selected from the given MC subset by bootsrapping. The final feature weights were determined by averaging the 1200 (150x8) weights determined by ML. Results: In the studied cohort 22 patients had a recurrence, 12 died. Mean time to treatment failure (TTF) was 14.3 months (range: 0-73 mo) and mean OS was 40.6 mo (range: 0-100 mo). The three highest weighted parameters were the CT-based textural features Low gray level zone emphasis (GLZSM; 0.083) and Small zone low gray emphasis (GLZSM; 0.080) as well as the joint fusion features Sum entropy (0.057) when predicting recurrence. For survival prediction the three highest weighted parameters were CT-based textural features maximum probability and Sum entropy of Gray-level co-occurrence matrix (GLCM-MP: 0.179; GLCM-SE: 0.10), as well as the PET-based minimum intensity feature (0,057). Conclusions: These preliminary results of our exploratory analysis demonstrate that textural and joint fusion features obtained by supervised ML are a valuable option for predicting recurrence and overall survival in cervical cancer. However further analysis with a bigger patient population is needed and still ongoing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WZ0904发布了新的文献求助10
2秒前
狂野静曼完成签到 ,获得积分10
3秒前
武映易完成签到 ,获得积分10
5秒前
zzz发布了新的文献求助10
6秒前
7秒前
大蒜味酸奶钊完成签到 ,获得积分10
7秒前
鱼宇纸完成签到 ,获得积分10
7秒前
LEE完成签到,获得积分20
7秒前
7秒前
Ava应助无限的绿真采纳,获得10
9秒前
小马甲应助xiongdi521采纳,获得10
9秒前
科研通AI5应助陶醉觅夏采纳,获得200
12秒前
憨鬼憨切发布了新的文献求助10
12秒前
12秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
14秒前
15秒前
16秒前
hh应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
Eva完成签到,获得积分10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
清爽老九应助科研通管家采纳,获得20
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
greenPASS666发布了新的文献求助10
17秒前
涂欣桐应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
secbox完成签到,获得积分10
18秒前
刘哈哈发布了新的文献求助30
18秒前
xyzdmmm完成签到,获得积分10
19秒前
19秒前
欢呼冰岚发布了新的文献求助30
20秒前
xiongdi521发布了新的文献求助10
20秒前
honeybee完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849