Flexible Affinity Matrix Learning for Unsupervised and Semisupervised Classification

聚类分析 基质(化学分析) 计算机科学 约束(计算机辅助设计) 无监督学习 人工智能 拉普拉斯矩阵 水准点(测量) 秩(图论) 模式识别(心理学) 机器学习 数据挖掘 数学 理论计算机科学 图形 大地测量学 组合数学 复合材料 材料科学 地理 几何学
作者
Xiaozhao Fang,Na Han,W.K. Wong,Shaohua Teng,Jigang Wu,Shengli Xie,Xuelong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (4): 1133-1149 被引量:36
标识
DOI:10.1109/tnnls.2018.2861839
摘要

In this paper, we propose a unified model called flexible affinity matrix learning (FAML) for unsupervised and semisupervised classification by exploiting both the relationship among data and the clustering structure simultaneously. To capture the relationship among data, we exploit the self-expressiveness property of data to learn a structured matrix in which the structures are induced by different norms. A rank constraint is imposed on the Laplacian matrix of the desired affinity matrix, so that the connected components of data are exactly equal to the cluster number. Thus, the clustering structure is explicit in the learned affinity matrix. By making the estimated affinity matrix approximate the structured matrix during the learning procedure, FAML allows the affinity matrix itself to be adaptively adjusted such that the learned affinity matrix can well capture both the relationship among data and the clustering structure. Thus, FAML has the potential to perform better than other related methods. We derive optimization algorithms to solve the corresponding problems. Extensive unsupervised and semisupervised classification experiments on both synthetic data and real-world benchmark data sets show that the proposed FAML consistently outperforms the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
司空天磊发布了新的文献求助10
刚刚
Hydaniel发布了新的文献求助10
刚刚
dd36完成签到,获得积分10
1秒前
昵称11发布了新的文献求助10
3秒前
Owen应助Huguizhou采纳,获得10
3秒前
韩涵完成签到 ,获得积分10
3秒前
充电宝应助2499297293采纳,获得10
3秒前
aich完成签到,获得积分10
3秒前
鲅鱼圈完成签到,获得积分10
4秒前
5秒前
一朵梅花完成签到,获得积分10
5秒前
咕噜仔完成签到,获得积分10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得30
6秒前
Hello应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
LewisAcid应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
香蕉诗蕊举报Llll求助涉嫌违规
7秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
打发打发的发到付电费完成签到,获得积分10
7秒前
维奈克拉应助科研通管家采纳,获得20
7秒前
哈哈发布了新的文献求助10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342