<i>Development of Image Recognition and Classification Algorithm for Tea Leaf Diseases Using Convolutional Neural Network</i>

枯萎病 卷积神经网络 山茶 人工智能 计算机科学 算法 模式识别(心理学) 园艺 生物
作者
Sheng‐Hung Lee,Chia‐Chang Wu,Shih‐Fang Chen
出处
期刊:2018 Detroit, Michigan July 29 - August 1, 2018 被引量:6
标识
DOI:10.13031/aim.201801254
摘要

Abstract. Tea (Camellia sinensis) is a high-value cash crop that produces a huge market value. Suitable temperature and relative humidity are critical factors to tea tree growing. Furthermore, in some unfavorable weather conditions, disease outbreaks might occur. With lesions arising, adverse impacts cause withering of tea leaves and results in the reduction in yield and profit. Thereby, early detection or on-site monitoring can provide effective integrated pest management (IPM) strategies to control the infected area and prevent further yield decreasing. In recent years, object detection using traditional image processing has been gradually replaced by convolutional neural network (CNN) due to its capability to identify targets with high complexity with a faster calculation speed. In this study, more than 1000 images of tea leaves are used to train the model based on faster region-based convolutional neural network (Faster R-CNN). The proposed model classifies three types of tea diseases, including brown blight, blister blight, and algal leaf spot. Preliminary results with 223 testing images performs an average precision (AP) of 63.58%, 81.08%, 64.71% for the identification of brown blight, blister blight, and algal leaf spot, respectively. The proposed algorithm provides tea farmers a convenient tool to identify the occurrence of three tea diseases in field automatically.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶茶三分糖完成签到,获得积分10
刚刚
易大人发布了新的文献求助10
1秒前
yph完成签到,获得积分10
1秒前
1秒前
hl应助88C真是太神奇啦采纳,获得20
1秒前
2秒前
独特的完成签到,获得积分10
2秒前
小蘑菇应助WAKAKA采纳,获得10
3秒前
甜甜寄凡发布了新的文献求助10
3秒前
YY发布了新的文献求助10
5秒前
独特的发布了新的文献求助10
5秒前
米诺关注了科研通微信公众号
6秒前
传奇3应助痴情的安阳采纳,获得10
6秒前
从容万恶发布了新的文献求助10
6秒前
wanci应助88C真是太神奇啦采纳,获得10
7秒前
李小跳完成签到,获得积分10
7秒前
小蘑菇应助lifescience1采纳,获得10
7秒前
8秒前
8秒前
1122完成签到,获得积分20
9秒前
芜所谓啦关注了科研通微信公众号
9秒前
beyondh发布了新的文献求助10
9秒前
传统的幻梦完成签到,获得积分10
13秒前
13秒前
13秒前
林夕完成签到,获得积分20
13秒前
13秒前
平淡寒梅发布了新的文献求助10
13秒前
华仔应助李龙波采纳,获得10
14秒前
kaki发布了新的文献求助10
14秒前
hi完成签到,获得积分10
16秒前
16秒前
16秒前
JamesPei应助七七采纳,获得10
16秒前
17秒前
18秒前
Lim发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171046
求助须知:如何正确求助?哪些是违规求助? 2821953
关于积分的说明 7937363
捐赠科研通 2482414
什么是DOI,文献DOI怎么找? 1322504
科研通“疑难数据库(出版商)”最低求助积分说明 633656
版权声明 602627