<i>Development of Image Recognition and Classification Algorithm for Tea Leaf Diseases Using Convolutional Neural Network</i>

枯萎病 卷积神经网络 山茶 人工智能 计算机科学 算法 模式识别(心理学) 园艺 生物
作者
Sheng‐Hung Lee,Chia‐Chang Wu,Shih‐Fang Chen
出处
期刊:2018 Detroit, Michigan July 29 - August 1, 2018 被引量:6
标识
DOI:10.13031/aim.201801254
摘要

Abstract. Tea (Camellia sinensis) is a high-value cash crop that produces a huge market value. Suitable temperature and relative humidity are critical factors to tea tree growing. Furthermore, in some unfavorable weather conditions, disease outbreaks might occur. With lesions arising, adverse impacts cause withering of tea leaves and results in the reduction in yield and profit. Thereby, early detection or on-site monitoring can provide effective integrated pest management (IPM) strategies to control the infected area and prevent further yield decreasing. In recent years, object detection using traditional image processing has been gradually replaced by convolutional neural network (CNN) due to its capability to identify targets with high complexity with a faster calculation speed. In this study, more than 1000 images of tea leaves are used to train the model based on faster region-based convolutional neural network (Faster R-CNN). The proposed model classifies three types of tea diseases, including brown blight, blister blight, and algal leaf spot. Preliminary results with 223 testing images performs an average precision (AP) of 63.58%, 81.08%, 64.71% for the identification of brown blight, blister blight, and algal leaf spot, respectively. The proposed algorithm provides tea farmers a convenient tool to identify the occurrence of three tea diseases in field automatically.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm关注了科研通微信公众号
刚刚
xieyuanxing发布了新的文献求助10
刚刚
刚刚
左然然完成签到,获得积分10
刚刚
刚刚
人福药业完成签到,获得积分10
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
细腻晓露发布了新的文献求助10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
三里墩头应助科研通管家采纳,获得10
1秒前
天线宝宝应助科研通管家采纳,获得10
1秒前
wing00024完成签到,获得积分10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
控制小弟应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
Leif应助科研通管家采纳,获得20
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
prosperp应助科研通管家采纳,获得10
2秒前
烟雨行舟发布了新的文献求助10
3秒前
燕尔蓝完成签到,获得积分10
3秒前
3秒前
3秒前
Ll发布了新的文献求助10
4秒前
4秒前
Sprite666完成签到,获得积分10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740