<i>Development of Image Recognition and Classification Algorithm for Tea Leaf Diseases Using Convolutional Neural Network</i>

枯萎病 卷积神经网络 山茶 人工智能 计算机科学 算法 模式识别(心理学) 园艺 生物
作者
Sheng‐Hung Lee,Chia‐Chang Wu,Shih‐Fang Chen
出处
期刊:2018 Detroit, Michigan July 29 - August 1, 2018 被引量:6
标识
DOI:10.13031/aim.201801254
摘要

Abstract. Tea (Camellia sinensis) is a high-value cash crop that produces a huge market value. Suitable temperature and relative humidity are critical factors to tea tree growing. Furthermore, in some unfavorable weather conditions, disease outbreaks might occur. With lesions arising, adverse impacts cause withering of tea leaves and results in the reduction in yield and profit. Thereby, early detection or on-site monitoring can provide effective integrated pest management (IPM) strategies to control the infected area and prevent further yield decreasing. In recent years, object detection using traditional image processing has been gradually replaced by convolutional neural network (CNN) due to its capability to identify targets with high complexity with a faster calculation speed. In this study, more than 1000 images of tea leaves are used to train the model based on faster region-based convolutional neural network (Faster R-CNN). The proposed model classifies three types of tea diseases, including brown blight, blister blight, and algal leaf spot. Preliminary results with 223 testing images performs an average precision (AP) of 63.58%, 81.08%, 64.71% for the identification of brown blight, blister blight, and algal leaf spot, respectively. The proposed algorithm provides tea farmers a convenient tool to identify the occurrence of three tea diseases in field automatically.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助伯赏觅翠采纳,获得10
刚刚
1秒前
贪玩的野狍子关注了科研通微信公众号
1秒前
2秒前
2秒前
暖小阳完成签到,获得积分10
3秒前
周星星发布了新的文献求助10
3秒前
3秒前
积极灵薇发布了新的文献求助20
3秒前
77发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
却之不恭6253完成签到,获得积分10
9秒前
周海江发布了新的文献求助10
10秒前
冰水混合物完成签到,获得积分10
10秒前
路小黑完成签到 ,获得积分10
11秒前
12秒前
12秒前
Nozomi发布了新的文献求助10
12秒前
hang完成签到,获得积分10
12秒前
带善人发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
15秒前
华仔应助song_song采纳,获得10
16秒前
齐天大圣应助五六七采纳,获得150
17秒前
老实起哞发布了新的文献求助10
17秒前
文档发布了新的文献求助10
18秒前
孙传彬发布了新的文献求助10
19秒前
无限飞丹发布了新的文献求助10
19秒前
犹豫的青烟完成签到 ,获得积分10
19秒前
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174