<i>Development of Image Recognition and Classification Algorithm for Tea Leaf Diseases Using Convolutional Neural Network</i>

枯萎病 卷积神经网络 山茶 人工智能 计算机科学 算法 模式识别(心理学) 园艺 生物
作者
Sheng‐Hung Lee,Chia‐Chang Wu,Shih‐Fang Chen
出处
期刊:2018 Detroit, Michigan July 29 - August 1, 2018 被引量:6
标识
DOI:10.13031/aim.201801254
摘要

Abstract. Tea (Camellia sinensis) is a high-value cash crop that produces a huge market value. Suitable temperature and relative humidity are critical factors to tea tree growing. Furthermore, in some unfavorable weather conditions, disease outbreaks might occur. With lesions arising, adverse impacts cause withering of tea leaves and results in the reduction in yield and profit. Thereby, early detection or on-site monitoring can provide effective integrated pest management (IPM) strategies to control the infected area and prevent further yield decreasing. In recent years, object detection using traditional image processing has been gradually replaced by convolutional neural network (CNN) due to its capability to identify targets with high complexity with a faster calculation speed. In this study, more than 1000 images of tea leaves are used to train the model based on faster region-based convolutional neural network (Faster R-CNN). The proposed model classifies three types of tea diseases, including brown blight, blister blight, and algal leaf spot. Preliminary results with 223 testing images performs an average precision (AP) of 63.58%, 81.08%, 64.71% for the identification of brown blight, blister blight, and algal leaf spot, respectively. The proposed algorithm provides tea farmers a convenient tool to identify the occurrence of three tea diseases in field automatically.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
科研通AI5应助kk采纳,获得10
2秒前
叶子发布了新的文献求助10
2秒前
xubee发布了新的文献求助10
2秒前
随心发布了新的文献求助10
2秒前
xiaobai完成签到,获得积分10
2秒前
3秒前
深情安青应助友好的半仙采纳,获得10
3秒前
NexusExplorer应助lss采纳,获得10
4秒前
4秒前
4秒前
额度发布了新的文献求助10
5秒前
研友_89jWGL发布了新的文献求助10
5秒前
5秒前
小姜醒醒完成签到,获得积分10
5秒前
畅快山兰发布了新的文献求助10
5秒前
清脆半邪发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
西呱呱发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
科研板砖完成签到,获得积分10
7秒前
bobo关注了科研通微信公众号
7秒前
7秒前
个性的平蓝完成签到,获得积分10
8秒前
8秒前
9秒前
哈哈哈哈哈哈完成签到,获得积分10
9秒前
金小豪完成签到,获得积分10
9秒前
xxl发布了新的文献求助10
9秒前
on完成签到,获得积分10
9秒前
9秒前
Sera完成签到,获得积分20
10秒前
古药完成签到,获得积分10
10秒前
drjim完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426