<i>Development of Image Recognition and Classification Algorithm for Tea Leaf Diseases Using Convolutional Neural Network</i>

枯萎病 卷积神经网络 山茶 人工智能 计算机科学 算法 模式识别(心理学) 园艺 生物
作者
Sheng‐Hung Lee,Chia‐Chang Wu,Shih‐Fang Chen
出处
期刊:2018 Detroit, Michigan July 29 - August 1, 2018 被引量:6
标识
DOI:10.13031/aim.201801254
摘要

Abstract. Tea (Camellia sinensis) is a high-value cash crop that produces a huge market value. Suitable temperature and relative humidity are critical factors to tea tree growing. Furthermore, in some unfavorable weather conditions, disease outbreaks might occur. With lesions arising, adverse impacts cause withering of tea leaves and results in the reduction in yield and profit. Thereby, early detection or on-site monitoring can provide effective integrated pest management (IPM) strategies to control the infected area and prevent further yield decreasing. In recent years, object detection using traditional image processing has been gradually replaced by convolutional neural network (CNN) due to its capability to identify targets with high complexity with a faster calculation speed. In this study, more than 1000 images of tea leaves are used to train the model based on faster region-based convolutional neural network (Faster R-CNN). The proposed model classifies three types of tea diseases, including brown blight, blister blight, and algal leaf spot. Preliminary results with 223 testing images performs an average precision (AP) of 63.58%, 81.08%, 64.71% for the identification of brown blight, blister blight, and algal leaf spot, respectively. The proposed algorithm provides tea farmers a convenient tool to identify the occurrence of three tea diseases in field automatically.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曾应助645654564采纳,获得10
刚刚
木木给木木的求助进行了留言
1秒前
等待睿渊发布了新的文献求助30
3秒前
热心市民小红花应助冰琪采纳,获得10
4秒前
bofu完成签到,获得积分10
4秒前
任性一兰完成签到,获得积分20
4秒前
漠阳完成签到,获得积分10
5秒前
xiaxia完成签到 ,获得积分10
7秒前
要减肥的孤容关注了科研通微信公众号
8秒前
湛湛发布了新的文献求助10
9秒前
123完成签到 ,获得积分10
10秒前
沙拉依丁完成签到,获得积分10
12秒前
小刺猬完成签到,获得积分10
13秒前
丘比特应助GooJohn采纳,获得10
13秒前
义气的羽毛完成签到,获得积分10
14秒前
Que完成签到 ,获得积分10
14秒前
caibaozi应助草莓布丁采纳,获得80
15秒前
小刺猬发布了新的文献求助10
16秒前
CorisKen应助缥缈问柳采纳,获得20
18秒前
18秒前
21秒前
yubin.cao完成签到,获得积分10
23秒前
尊敬依珊发布了新的文献求助10
24秒前
cindywu发布了新的文献求助10
24秒前
25秒前
25秒前
vigour发布了新的文献求助10
25秒前
yiryir完成签到 ,获得积分10
26秒前
YamDaamCaa应助沙拉依丁采纳,获得30
27秒前
妙aaa完成签到,获得积分10
28秒前
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
CipherSage应助科研通管家采纳,获得10
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
Liufgui应助科研通管家采纳,获得30
29秒前
YamDaamCaa应助科研通管家采纳,获得30
29秒前
Hello应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
29秒前
隐形曼青应助科研通管家采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052