Assessment of the effectiveness of spatiotemporal fusion of multi-source satellite images for cotton yield estimation

归一化差异植被指数 遥感 卫星 像素 环境科学 卫星图像 图像分辨率 比例(比率) 地理 地图学 计算机科学 气候变化 地质学 人工智能 工程类 航空航天工程 海洋学
作者
Linghua Meng,Huanjun Liu,Xinle Zhang,Chunying Ren,Susan L. Ustin,Zhengchao Qiu,Mengyuan Xu,Dong Guo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:162: 44-52 被引量:33
标识
DOI:10.1016/j.compag.2019.04.001
摘要

Deficiencies in the spatiotemporal resolution of remote sensing (RS) images limit crop yield estimation at the farm and field scale. These deficiencies may be alleviated by fusion of high spatial and temporal resolution images such as MODIS and Landsat. In this study, a new daily MODIS NDVI product (reconstructed MODIS) was generated from 16-day composite images using the Extreme Model, which integrates the NDVI value with the corresponding specific date information at each pixel. The Flexible Spatiotemporal Data Fusion (FSDAF) model was then used to create two fused, high-resolution time-series products (fused MODIS and fused reconstructed MODIS) in order to enhance the spatial and temporal effectiveness of satellite images for field-scale applications. Three yield estimation models were then built using time-series data of Landsat NDVI, predicted NDVI from fused MODIS, and predicted NDVI from fused reconstructed MODIS. The methodology was tested on a farm field over the cotton growing season in the San Joaquin Valley of California. Results showed that: (1) the time trend of NDVI over the growing season for the fused reconstructed MODIS was more similar to that of Landsat than were either of MODIS or fused MODIS, indicating that the specific date of MODIS pixels is important for time-series analysis; (2) the NDVI from fused reconstructed MODIS provided the best correlation with Landsat NDVI, with R2 and RMSE values 15% higher than for fused MODIS; (3) correlation between cotton yield and all three datasets at the pixel level was statistically significant for all image dates, and (4) the accuracy of the cotton yield estimation model using predicted NDVI from fused reconstructed MODIS (R2 = 0.79; RMSE = 488.01) was higher than with fused MODIS (R2 = 0.77; RMSE = 513.96) and only slightly lower than with Landsat (R2 = 0.84, RMSE = 463.12). This study improved the accuracy of MODIS-based yield estimation using fusion images, and the results can be applied to improve vegetation monitoring and quantitative modeling using MODIS NDVI at the field scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远方的大树给远方的大树的求助进行了留言
刚刚
o10发布了新的文献求助10
刚刚
1秒前
吃口饭发布了新的文献求助10
1秒前
传奇3应助虚心的以晴采纳,获得10
1秒前
1秒前
2秒前
文俊杰完成签到,获得积分10
2秒前
2秒前
魔幻冷霜完成签到,获得积分10
3秒前
3秒前
3秒前
TRY发布了新的文献求助10
3秒前
4秒前
RUSeries完成签到,获得积分10
5秒前
5秒前
snow发布了新的文献求助10
6秒前
一苇以航发布了新的文献求助10
6秒前
yellow完成签到,获得积分20
6秒前
草上飞李四完成签到,获得积分10
6秒前
张振宇完成签到 ,获得积分10
7秒前
yanzu应助卡乐瑞咩吹可采纳,获得20
7秒前
7秒前
8秒前
森sen发布了新的文献求助30
8秒前
9秒前
9秒前
seven发布了新的文献求助10
9秒前
10秒前
10秒前
领导范儿应助坚定青柏采纳,获得10
10秒前
超大玻璃瓶完成签到 ,获得积分10
10秒前
荷荷HeHe完成签到 ,获得积分10
11秒前
饱满懿轩完成签到,获得积分10
11秒前
小石头完成签到,获得积分10
11秒前
科研通AI5应助撒西不理采纳,获得10
12秒前
内向莛完成签到,获得积分10
12秒前
蒙蒙完成签到 ,获得积分10
12秒前
haku发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246