Rational Design of High-Performance DeNOx Catalysts Based on MnxCo3–xO4 Nanocages Derived from Metal–Organic Frameworks

纳米笼 催化作用 尖晶石 化学工程 吸附 材料科学 多孔性 比表面积 氧化钴 无机化学 化学 纳米技术 物理化学 有机化学 冶金 复合材料 工程类
作者
Lei Zhang,Liyi Shi,Lei Huang,Jianping Zhang,Ruihua Gao,Dengsong Zhang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:4 (6): 1753-1763 被引量:516
标识
DOI:10.1021/cs401185c
摘要

Herein, we have rationally designed and originally developed a high-performance deNOx catalyst based on hollow porous MnxCo3–xO4 nanocages with a spinel structure thermally derived from nanocube-like metal–organic frameworks (Mn3[Co(CN)6]2·nH2O), which are synthesized via a self-assemble method. The as-prepared catalysts have been characterized systematically to elucidate their morphological structure and surface properties. As compared with conventional MnxCo3–xO4 nanoparticles, MnxCo3–xO4 nanocages possess a much better catalytic activity at low-temperature regions, higher N2 selectivity, more extensive operating-temperature window, higher stability, and SO2 tolerance. The feature of hollow and porous structures provides a larger surface area and more active sites to adsorb and activate reaction gases, resulting in the high catalytic activity. Moreover, the uniform distribution and strong interaction of manganese and cobalt oxide species not only enhance the catalytic cycle but also inhibit the formation of manganese sulfate, resulting in high catalytic cycle stability and good SO2 tolerance. In light of the various characterization results, the excellent deNOx performance of MnxCo3–xO4 nanocages can be attributed to the hollow and porous structures, the uniform distribution of active sites, as well as the strong interaction of manganese and cobalt oxide species. The excellent catalytic performance suggests that MnxCo3–xO4 nanocages are promising candidates for low-temperature deNOx catalysts. More importantly, the present study indicates that the hollow porous architectures and well-dispersed active components can effectively enhance the performance of catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WOLF发布了新的文献求助10
2秒前
科研通AI5应助典雅的俊驰采纳,获得10
4秒前
t通应助学霸宇大王采纳,获得10
4秒前
852应助KingYugene采纳,获得10
4秒前
HEIKU应助morena采纳,获得10
4秒前
4秒前
4秒前
快乐水完成签到,获得积分10
6秒前
7秒前
山海之间完成签到,获得积分10
7秒前
8秒前
小皮不皮发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
10秒前
12秒前
13秒前
pluto应助顶呱呱采纳,获得10
14秒前
14秒前
15秒前
KingYugene发布了新的文献求助10
17秒前
123发布了新的文献求助20
18秒前
20秒前
tiancu完成签到,获得积分10
22秒前
22秒前
23秒前
姜太公发布了新的文献求助30
24秒前
科研通AI5应助WOLF采纳,获得10
25秒前
tiancu发布了新的文献求助10
25秒前
26秒前
cuicui发布了新的文献求助10
28秒前
28秒前
李白易完成签到,获得积分10
28秒前
123完成签到,获得积分10
28秒前
29秒前
29秒前
30秒前
木木完成签到,获得积分10
33秒前
35秒前
清脆的水蜜桃完成签到 ,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775727
求助须知:如何正确求助?哪些是违规求助? 3321329
关于积分的说明 10204919
捐赠科研通 3036310
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783