An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening

部分可观测马尔可夫决策过程 计算机科学 人口 隐马尔可夫模型 医疗保健 马尔可夫决策过程 糖尿病前期 医学 人工智能 风险分析(工程) 马尔可夫模型 机器学习 2型糖尿病 马尔可夫过程 马尔可夫链 糖尿病 数学 统计 内分泌学 经济增长 环境卫生 经济
作者
Hossein Kamalzadeh,Vishal Ahuja,Michael Hahsler,Michael E. Bowen
出处
期刊:Production and Operations Management [Wiley]
卷期号:30 (9): 3161-3191 被引量:13
标识
DOI:10.1111/poms.13422
摘要

Type 2 diabetes is a chronic disease that affects millions of Americans and puts a significant burden on the healthcare system. The medical community sees screening patients to identify and treat prediabetes and diabetes early as an important goal; however, universal population screening is operationally not feasible, and screening policies need to take characteristics of the patient population into account. For instance, the screening policy for a population in an affluent neighborhood may differ from that of a safety‐net hospital. The problem of optimal diabetes screening—whom to screen and when to screen—is clearly important, and small improvements could have an enormous impact. However, the problem is typically only discussed from a practical viewpoint in the medical literature; a thorough theoretical framework from an operational viewpoint is largely missing. In this study, we propose an approach that builds on multiple methods—partially observable Markov decision process (POMDP), hidden Markov model (HMM), and predictive risk modeling (PRM). It uses available clinical information, in the form of electronic health records (EHRs), on specific patient populations to derive an optimal policy, which is used to generate screening decisions, individualized for each patient. The POMDP model, used for determining optimal decisions, lies at the core of our approach. We use HMM to estimate the cohort‐specific progression of diabetes (i.e., transition probability matrix) and the emission matrix. We use PRM to generate observations—in the form of individualized risk scores—for the POMDP. Both HMM and PRM are learned from EHR data. Our approach is unique because (i) it introduces a novel way of incorporating predictive modeling into a formal decision framework to derive an optimal screening policy; and (ii) it is based on real clinical data. We fit our model using data on a cohort of more than 60,000 patients over 5 years from a large safety‐net health system and then demonstrate the model's utility by conducting a simulation study. The results indicate that our proposed screening policy outperforms existing guidelines widely used in clinical practice. Our estimates suggest that implementing our policy for the studied cohort would add one quality‐adjusted life year for every patient, and at a cost that is 35% lower, compared with existing guidelines. Our proposed framework is generalizable to other chronic diseases, such as cancer and HIV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助李濯梦采纳,获得10
刚刚
华仔应助青林采纳,获得10
1秒前
呋喃发布了新的文献求助10
2秒前
Babyblue发布了新的文献求助10
2秒前
小马甲应助一二采纳,获得10
2秒前
curtain完成签到,获得积分10
3秒前
Gg完成签到,获得积分10
4秒前
6秒前
周运来完成签到,获得积分10
10秒前
无花果应助兰兰爱学习采纳,获得10
15秒前
16秒前
呋喃完成签到,获得积分10
17秒前
2025顺顺利利完成签到 ,获得积分10
17秒前
火星上的穆完成签到,获得积分10
17秒前
19秒前
21秒前
21秒前
请叫我风吹麦浪应助渐渐采纳,获得10
21秒前
Gin完成签到,获得积分10
22秒前
ADC发布了新的文献求助10
24秒前
可靠的碧凡完成签到 ,获得积分10
24秒前
24秒前
25秒前
晴晴发布了新的文献求助10
26秒前
26秒前
26秒前
26秒前
Su发布了新的文献求助10
28秒前
28秒前
曾经小伙完成签到 ,获得积分10
29秒前
共享精神应助怕黑送终采纳,获得10
29秒前
文艺的明杰完成签到,获得积分10
29秒前
瘦瘦依秋发布了新的文献求助10
29秒前
追寻的怜容完成签到,获得积分10
30秒前
内向茉莉发布了新的文献求助10
31秒前
青林发布了新的文献求助10
31秒前
ceeray23应助liuhll采纳,获得10
33秒前
34秒前
畅快的鱼发布了新的文献求助10
34秒前
wakeeeeeee发布了新的文献求助10
36秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462739
求助须知:如何正确求助?哪些是违规求助? 3056247
关于积分的说明 9051296
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506688
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720