Interferon regulatory factor 3 (IRF3) is activated by IκB kinase ε (IKKε) and Tank-binding kinase 1 (TBK1), which plays a crucial role in the interferon signaling in vertebrates. However, the regulation of teleost IRF3 by IKKε remains largely unknown. In this study, the IRF3 homologue (bcIRF3) of black carp (Mylopharyngodon piceus) has been cloned and characterized. The transcription of bcIRF3 was detected to increase in host cells in response to different stimuli. bcIRF3 distributed predominantly in the cytosolic area; however, translocated into nuclei after virus infection. bcIRF3 showed IFN-inducing ability in reporter assay and EPC cells expressing bcIRF3 showed enhanced antiviral ability against both grass carp reovirus (GCRV) and spring viremia of carp virus (SVCV). Moreover, knockdown of bcIRF3 reduced the antiviral ability of the host cells, and the transcription of antiviral-related cytokines was obviously lower in bcIRF3-deficient host cells than that of control cells. The data of reporter assay and plaque assay demonstrated that bcIKKε obviously enhanced bcIRF3-mediated IFN production and antiviral activity. Immunofluorescent staining and co-immunoprecipitation assay revealed that bcIKKε interacted with bcIRF3. It was interesting that the nuclear translocation of bcIRF3 and bcIKKε was enhanced by each other when these two molecules were co-expressed in the cells, however, the protein levels of bcIRF3 and bcIKKε were decreased mutually. Thus, our data support the conclusion that bcIKKε interacts with bcIRF3 and enhances bcIRF3-mediated antiviral signaling during host innate immune activation.