Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework

翼型 自编码 流量(数学) 物理 雷诺数 人工智能 计算机科学 人工神经网络 模式识别(心理学) 湍流 机械
作者
Jing Wang,Cheng He,Runze Li,Haixin Chen,Chen Zhai,Miao Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (8) 被引量:25
标识
DOI:10.1063/5.0053979
摘要

Effective access to obtain the complex flow fields around an airfoil is crucial in improving the quality of supercritical wings. In this study, a systematic method based on generative deep learning is developed to extract features for depicting the flow fields and predict the steady flow fields around supercritical airfoils. To begin with, a variational autoencoder (VAE) network is designed to extract representative features of the flow fields. Specifically, the principal component analysis technique is adopted to realize feature reduction, aiming to obtain the optimal dimension of features in VAE. Afterward, the extracted features are incorporated into the dataset, followed by the mapping from the airfoil shapes to features via a multilayer perception (MLP) model. Eventually, a composite network is adopted to connect the MLP and the decoder of VAE for predicting the flow fields given the airfoil. The proposed VAE network achieves compression of high-dimensional flow field data into ten representative features. The statistical results indicate the accurate and generalized performance of the proposed method in reconstructing and predicting flow fields around a supercritical airfoil. Especially, our method obtains accurate prediction results over the shock area, indicating its superiority in conducting turbulent flow under high Reynolds number.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
嘟嘟完成签到 ,获得积分10
2秒前
2秒前
爱吃饼干的土拨鼠完成签到,获得积分10
4秒前
4秒前
volvoamg发布了新的文献求助10
6秒前
nanananan发布了新的文献求助10
7秒前
领导范儿应助drwalyssa采纳,获得10
7秒前
安安放发布了新的文献求助10
8秒前
8秒前
DrD完成签到,获得积分10
9秒前
9秒前
灿灿的资源完成签到,获得积分10
10秒前
Ablaike发布了新的文献求助10
12秒前
12秒前
13秒前
16秒前
含蓄妖丽发布了新的文献求助10
17秒前
66发布了新的文献求助10
17秒前
科研通AI2S应助weilao采纳,获得10
18秒前
18秒前
18秒前
搜集达人应助安安放采纳,获得10
19秒前
20秒前
21秒前
21秒前
噔噔噔噔发布了新的文献求助10
22秒前
qiqi发布了新的文献求助10
22秒前
君与同行发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
彭于晏应助闪耀的启明星采纳,获得10
24秒前
24秒前
SHNU_YS完成签到,获得积分10
25秒前
pj发布了新的文献求助10
25秒前
wink发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856761
关于积分的说明 8107137
捐赠科研通 2522079
什么是DOI,文献DOI怎么找? 1355350
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478