材料科学
电介质
硅橡胶
摩擦电效应
复合材料
介电弹性体
聚合物
天然橡胶
介电损耗
光电子学
作者
Yuying Cao,Weihua Cao,Xiao Yang,Changxin Liu,Xiaowen Qi
摘要
Abstract Triboelectric nanogenerator (TENG) technologies have explosive development in the field of energy harvesting and self‐powered sensing. As the key element of triboelectric devices, dielectric polymers have obtained much attention in recent years. The dielectric properties of polymer determine the output performance of TENG. In this paper, we take silicone rubber as an example of dielectric polymers, to study the properties of molecular structure influence on the dielectric properties and mechanical properties by the molecular dynamics simulation method. The free volume fraction, dielectric constant, and mechanical properties of silicone rubbers with different branch chains were calculated. The dielectric constant is highly related to the free volume distribution and the dipole moments of silicone rubbers with different amounts of branch chains. For fewer branch chains silicone rubber, the free volume distribution contributes most to the dielectric constant; for more branch chains silicone rubber, the dipole moment dominates the dielectric constant. Therefore, the silicone rubber ratio has a great influence on the dielectric constant of silicone rubber. With the increase of temperature, the dielectric constant of 2‐chain silicone rubber increases at first and then decreases, and the maximum value is obtained near 300 K. Therefore, it is necessary to control the temperature when silicone rubber is used as a dielectric material. This work can be a guide for improving the dielectric properties of silicone rubber, and it provides a new approach to the optimal design of high‐performance triboelectric nanogenerators.
科研通智能强力驱动
Strongly Powered by AbleSci AI