Real-time POI recommendation via modeling long- and short-term user preferences

计算机科学 推荐系统 偏爱 期限(时间) 滤波器(信号处理) 光学(聚焦) 钥匙(锁) 协同过滤 兴趣点 空格(标点符号) 点(几何) 情报检索 数据挖掘 人工智能 计算机安全 数学 量子力学 计算机视觉 操作系统 光学 物理 经济 微观经济学 几何学
作者
Xin Liu,Yongjian Yang,Yuanbo Xu,Funing Yang,Qiuyang Huang,Hong Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:467: 454-464 被引量:32
标识
DOI:10.1016/j.neucom.2021.09.056
摘要

Recently, Next Point-of-Interest (POI) Recommendation which proposes users for their next visiting locations, has gained increasing attention. A timely and accurate next POI recommendation can improve users’ efficient experiences. However, most existing methods typically focus on the sequential influence, but neglect the user’s real-time preference changing over time. In some scenarios, users may need a real-time POI recommendation, for example, when using Take-away Applications, users need recommending the appropriate restaurants at the specific moment. Hence, how to mine users’ patterns of life and their current preferences becomes an essential issue for the real-time POI recommendation. To address the issues above, we propose a real-time preference mining model (RTPM) which is based on LSTM to recommend the next POI with time restrictions. Specifically, RTPM mines users’ real-time preferences from long-term and short-term preferences in a uniform framework. For the long-term preferences, we mine the periodic trends of users’ behaviors between weeks to better reflect users’ patterns of life. While for the short-term preferences, trainable time transition vectors which represent the public preferences in corresponding time slots, are introduced to model users’ current time preferences influenced by the public. At the stage of recommendation, we design a category filter to filter out the POIs whose categories are unpopular in corresponding time slots to reduce the search space and make recommendation fit current time slot better. Note that RTPM does not utilize users’ attributes and their current locations for recommendation, which makes great contributions to users’ privacy protection. Extensive experiments on two real-world datasets demonstrate that RTPM outperforms the state-of-the-art models on Recall and NDCG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
着急的寒梦完成签到,获得积分20
刚刚
刚刚
xxxxx发布了新的文献求助10
1秒前
无聊完成签到 ,获得积分10
2秒前
cc完成签到,获得积分10
3秒前
风趣的老太应助711采纳,获得10
3秒前
3秒前
3秒前
打打应助Qq采纳,获得10
3秒前
catcher456发布了新的文献求助10
3秒前
chf完成签到,获得积分20
4秒前
乐观小之完成签到,获得积分0
4秒前
斯文败类应助潇洒的凝阳采纳,获得10
4秒前
前程似锦完成签到 ,获得积分10
4秒前
bszz发布了新的文献求助10
5秒前
5秒前
郭自同完成签到,获得积分10
5秒前
打打应助kangkang采纳,获得10
5秒前
我是老大应助咕噜噜采纳,获得10
6秒前
雄i完成签到,获得积分10
6秒前
高兴的代芙完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
斯文败类应助all采纳,获得10
7秒前
ASHhan111完成签到,获得积分10
8秒前
JJJ关闭了JJJ文献求助
8秒前
欢呼的渊思完成签到,获得积分10
9秒前
热心小萱完成签到,获得积分20
9秒前
9秒前
chf发布了新的文献求助10
9秒前
exosome完成签到,获得积分10
9秒前
10秒前
鲁鲁完成签到,获得积分10
10秒前
10秒前
11秒前
行者无疆发布了新的文献求助10
11秒前
Hello应助RL采纳,获得10
11秒前
立夏完成签到,获得积分10
11秒前
skskysky完成签到,获得积分10
13秒前
13秒前
小蘑菇应助着急的寒梦采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615038
求助须知:如何正确求助?哪些是违规求助? 4019023
关于积分的说明 12440653
捐赠科研通 3701922
什么是DOI,文献DOI怎么找? 2041374
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957731