Real-time POI recommendation via modeling long- and short-term user preferences

计算机科学 推荐系统 偏爱 期限(时间) 滤波器(信号处理) 光学(聚焦) 钥匙(锁) 协同过滤 兴趣点 空格(标点符号) 点(几何) 情报检索 数据挖掘 人工智能 计算机安全 数学 量子力学 计算机视觉 操作系统 光学 物理 经济 微观经济学 几何学
作者
Xin Liu,Yongjian Yang,Yuanbo Xu,Funing Yang,Qiuyang Huang,Hong Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:467: 454-464 被引量:32
标识
DOI:10.1016/j.neucom.2021.09.056
摘要

Recently, Next Point-of-Interest (POI) Recommendation which proposes users for their next visiting locations, has gained increasing attention. A timely and accurate next POI recommendation can improve users’ efficient experiences. However, most existing methods typically focus on the sequential influence, but neglect the user’s real-time preference changing over time. In some scenarios, users may need a real-time POI recommendation, for example, when using Take-away Applications, users need recommending the appropriate restaurants at the specific moment. Hence, how to mine users’ patterns of life and their current preferences becomes an essential issue for the real-time POI recommendation. To address the issues above, we propose a real-time preference mining model (RTPM) which is based on LSTM to recommend the next POI with time restrictions. Specifically, RTPM mines users’ real-time preferences from long-term and short-term preferences in a uniform framework. For the long-term preferences, we mine the periodic trends of users’ behaviors between weeks to better reflect users’ patterns of life. While for the short-term preferences, trainable time transition vectors which represent the public preferences in corresponding time slots, are introduced to model users’ current time preferences influenced by the public. At the stage of recommendation, we design a category filter to filter out the POIs whose categories are unpopular in corresponding time slots to reduce the search space and make recommendation fit current time slot better. Note that RTPM does not utilize users’ attributes and their current locations for recommendation, which makes great contributions to users’ privacy protection. Extensive experiments on two real-world datasets demonstrate that RTPM outperforms the state-of-the-art models on Recall and NDCG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
糖桔完成签到 ,获得积分10
1秒前
完美世界应助li采纳,获得10
1秒前
Faine完成签到 ,获得积分10
1秒前
七分饱完成签到,获得积分10
2秒前
赵暖橙发布了新的文献求助10
2秒前
杨宁发布了新的文献求助10
2秒前
林昊完成签到 ,获得积分10
3秒前
大个应助chenyinglin采纳,获得10
4秒前
yz完成签到,获得积分10
5秒前
科研通AI2S应助dacongming采纳,获得10
6秒前
绿水菊完成签到,获得积分10
6秒前
吃零食吃不下饭完成签到,获得积分10
8秒前
CodeCraft应助yz采纳,获得10
9秒前
9秒前
饱满的毛巾完成签到,获得积分10
10秒前
yag发布了新的文献求助10
11秒前
阮绵绵完成签到 ,获得积分10
11秒前
科研通AI2S应助赵暖橙采纳,获得10
11秒前
Shaynin完成签到,获得积分10
11秒前
VDC应助Yunus采纳,获得20
12秒前
钮文昊完成签到,获得积分10
12秒前
qs完成签到,获得积分10
12秒前
稳重向南发布了新的文献求助10
12秒前
13秒前
13秒前
田様应助拼搏的乐双采纳,获得10
13秒前
14秒前
14秒前
15秒前
Orange应助杨宁采纳,获得10
15秒前
Felix完成签到,获得积分20
17秒前
17秒前
18秒前
18秒前
li发布了新的文献求助10
19秒前
yag完成签到,获得积分20
19秒前
小巧的诗双完成签到,获得积分10
19秒前
靓丽剑心发布了新的文献求助10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242929
求助须知:如何正确求助?哪些是违规求助? 2887037
关于积分的说明 8245962
捐赠科研通 2555600
什么是DOI,文献DOI怎么找? 1383752
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625625