Real-time POI recommendation via modeling long- and short-term user preferences

计算机科学 推荐系统 偏爱 期限(时间) 滤波器(信号处理) 光学(聚焦) 钥匙(锁) 协同过滤 兴趣点 空格(标点符号) 点(几何) 情报检索 数据挖掘 人工智能 计算机安全 数学 量子力学 计算机视觉 操作系统 光学 物理 经济 微观经济学 几何学
作者
Xin Liu,Yongjian Yang,Yuanbo Xu,Funing Yang,Qiuyang Huang,Hong Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:467: 454-464 被引量:32
标识
DOI:10.1016/j.neucom.2021.09.056
摘要

Recently, Next Point-of-Interest (POI) Recommendation which proposes users for their next visiting locations, has gained increasing attention. A timely and accurate next POI recommendation can improve users’ efficient experiences. However, most existing methods typically focus on the sequential influence, but neglect the user’s real-time preference changing over time. In some scenarios, users may need a real-time POI recommendation, for example, when using Take-away Applications, users need recommending the appropriate restaurants at the specific moment. Hence, how to mine users’ patterns of life and their current preferences becomes an essential issue for the real-time POI recommendation. To address the issues above, we propose a real-time preference mining model (RTPM) which is based on LSTM to recommend the next POI with time restrictions. Specifically, RTPM mines users’ real-time preferences from long-term and short-term preferences in a uniform framework. For the long-term preferences, we mine the periodic trends of users’ behaviors between weeks to better reflect users’ patterns of life. While for the short-term preferences, trainable time transition vectors which represent the public preferences in corresponding time slots, are introduced to model users’ current time preferences influenced by the public. At the stage of recommendation, we design a category filter to filter out the POIs whose categories are unpopular in corresponding time slots to reduce the search space and make recommendation fit current time slot better. Note that RTPM does not utilize users’ attributes and their current locations for recommendation, which makes great contributions to users’ privacy protection. Extensive experiments on two real-world datasets demonstrate that RTPM outperforms the state-of-the-art models on Recall and NDCG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助张世华采纳,获得10
1秒前
4秒前
所所应助Zengyuan采纳,获得10
4秒前
4秒前
4秒前
5秒前
科研通AI6应助大毛采纳,获得10
7秒前
8秒前
8秒前
科研小十三完成签到,获得积分10
9秒前
SD发布了新的文献求助10
10秒前
11秒前
小半夏汤完成签到,获得积分10
11秒前
伴乏发布了新的文献求助10
12秒前
浮游应助Ray采纳,获得10
13秒前
linmo发布了新的文献求助10
13秒前
14秒前
Zhengzy完成签到,获得积分10
15秒前
16秒前
薛枏完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助CyS采纳,获得10
17秒前
李爱国应助CyS采纳,获得10
18秒前
hwyk发布了新的文献求助10
18秒前
xiaomuaixuexi完成签到,获得积分10
20秒前
20秒前
Function完成签到,获得积分10
20秒前
小J完成签到 ,获得积分10
20秒前
向日葵完成签到,获得积分10
21秒前
23秒前
Function发布了新的文献求助10
25秒前
科研通AI6应助森林采纳,获得10
25秒前
希望天下0贩的0应助linmo采纳,获得10
26秒前
张茜完成签到,获得积分10
26秒前
机智无春完成签到,获得积分10
26秒前
酷波er应助松下落叶采纳,获得10
26秒前
李爱国应助李白采纳,获得10
27秒前
淡淡土豆应助Ray采纳,获得20
27秒前
在水一方应助知世耶采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533210
求助须知:如何正确求助?哪些是违规求助? 4621604
关于积分的说明 14579314
捐赠科研通 4561659
什么是DOI,文献DOI怎么找? 2499451
邀请新用户注册赠送积分活动 1479304
关于科研通互助平台的介绍 1450504