Real-time POI recommendation via modeling long- and short-term user preferences

计算机科学 推荐系统 偏爱 期限(时间) 滤波器(信号处理) 光学(聚焦) 钥匙(锁) 协同过滤 兴趣点 空格(标点符号) 点(几何) 情报检索 数据挖掘 人工智能 计算机安全 数学 量子力学 计算机视觉 操作系统 光学 物理 经济 微观经济学 几何学
作者
Xin Liu,Yongjian Yang,Yuanbo Xu,Funing Yang,Qiuyang Huang,Hong Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:467: 454-464 被引量:32
标识
DOI:10.1016/j.neucom.2021.09.056
摘要

Recently, Next Point-of-Interest (POI) Recommendation which proposes users for their next visiting locations, has gained increasing attention. A timely and accurate next POI recommendation can improve users’ efficient experiences. However, most existing methods typically focus on the sequential influence, but neglect the user’s real-time preference changing over time. In some scenarios, users may need a real-time POI recommendation, for example, when using Take-away Applications, users need recommending the appropriate restaurants at the specific moment. Hence, how to mine users’ patterns of life and their current preferences becomes an essential issue for the real-time POI recommendation. To address the issues above, we propose a real-time preference mining model (RTPM) which is based on LSTM to recommend the next POI with time restrictions. Specifically, RTPM mines users’ real-time preferences from long-term and short-term preferences in a uniform framework. For the long-term preferences, we mine the periodic trends of users’ behaviors between weeks to better reflect users’ patterns of life. While for the short-term preferences, trainable time transition vectors which represent the public preferences in corresponding time slots, are introduced to model users’ current time preferences influenced by the public. At the stage of recommendation, we design a category filter to filter out the POIs whose categories are unpopular in corresponding time slots to reduce the search space and make recommendation fit current time slot better. Note that RTPM does not utilize users’ attributes and their current locations for recommendation, which makes great contributions to users’ privacy protection. Extensive experiments on two real-world datasets demonstrate that RTPM outperforms the state-of-the-art models on Recall and NDCG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jingyi发布了新的文献求助30
刚刚
jiayou发布了新的文献求助10
1秒前
小棉背心完成签到 ,获得积分10
1秒前
2秒前
2秒前
烟花应助青菜采纳,获得10
2秒前
kingwill应助Angelina采纳,获得20
2秒前
3秒前
Yunyunyang发布了新的文献求助30
3秒前
Hezzzz完成签到,获得积分10
3秒前
小檗碱完成签到,获得积分10
3秒前
5秒前
5秒前
安静的飞薇完成签到,获得积分10
5秒前
舒适的冰凡完成签到,获得积分10
6秒前
深情未来完成签到,获得积分10
6秒前
ashoreee完成签到,获得积分10
6秒前
LHL完成签到,获得积分10
7秒前
科研小白完成签到,获得积分10
7秒前
共享精神应助Jingyi采纳,获得10
7秒前
rush完成签到,获得积分10
8秒前
kirito发布了新的文献求助10
10秒前
123关闭了123文献求助
10秒前
大饼半斤完成签到,获得积分10
10秒前
拼搏山槐完成签到,获得积分10
10秒前
herococa应助安静的飞薇采纳,获得10
10秒前
小檗碱发布了新的文献求助10
11秒前
jiajia完成签到,获得积分10
11秒前
Ziyi_Xu完成签到,获得积分10
12秒前
12秒前
FKVB_完成签到 ,获得积分10
12秒前
lulu完成签到,获得积分10
12秒前
12秒前
成绩提高发布了新的文献求助10
12秒前
12秒前
张同学完成签到,获得积分10
12秒前
lllll完成签到,获得积分10
12秒前
12秒前
12秒前
Leo2025完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950238
求助须知:如何正确求助?哪些是违规求助? 3495684
关于积分的说明 11078092
捐赠科研通 3226106
什么是DOI,文献DOI怎么找? 1783479
邀请新用户注册赠送积分活动 867704
科研通“疑难数据库(出版商)”最低求助积分说明 800894