Mass Customization and the “Parts-Procurement Planning Problem”

灵活性(工程) 大规模定制 采购 计算机科学 航程(航空) 运筹学 集合(抽象数据类型) 工业工程 组分(热力学) 数学优化 个性化 运营管理 经济 数学 工程类 统计 航空航天工程 万维网 物理 管理 程序设计语言 热力学
作者
Ali Fattahi,Sriram Dasu,Reza Ahmadi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (8): 5778-5797 被引量:3
标识
DOI:10.1287/mnsc.2021.4172
摘要

We study a new parts-procurement planning problem that is motivated by a global auto manufacturer (GAM) that practices mass customization. Because of the astronomically large number of producible configurations, forecasting their demand is impossible. Instead, firms forecast demand for options that constitute a vehicle. Requirements for many parts (up to 60%) are based on the combinations of options in a fully configured vehicle. The options’ forecast, however, does not map into a unique configuration-level forecast. As a result, the options’ forecast translates into ranges for many parts’ requirements. The combined ranges of a set of parts are not always equal to the sum of the component ranges; they may be less. Determining parts ranges is a large-scale NP-hard problem. Large ranges and inaccurate calculation of these ranges can result in excess inventories, shortages in inventories, and suboptimal flexibility levels. We model and analyze the problem of allocating parts to suppliers and accurately computing the ranges to minimize procurement costs arising because of ranges. The range costs are assumed to be convex increasing. We perform extensive numerical analysis using a large set of randomly generated instances as well as eight industrial instances received from GAM to establish the quality of our approximation framework. Our proposed approach significantly reduces the error in range estimates relative to current industry practice. In addition, the proposed approach for allocations of parts to suppliers reduces joint-parts ranges by an average of 29.87% relative to that of current practice. This paper was accepted by Jeannette Song, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助正月的大雪采纳,获得10
刚刚
童小肥发布了新的文献求助10
刚刚
JamesPei应助幽默的沁采纳,获得10
刚刚
1秒前
勇敢牛牛发布了新的文献求助30
1秒前
海比天蓝发布了新的文献求助50
1秒前
1秒前
薏米人儿发布了新的文献求助10
1秒前
NexusExplorer应助代桃采纳,获得10
2秒前
在水一方应助听风随影采纳,获得10
2秒前
HYD发布了新的文献求助10
2秒前
2秒前
唐破茧发布了新的文献求助30
2秒前
long驳回了顾矜应助
3秒前
欣慰碧琴完成签到,获得积分10
3秒前
accelia完成签到,获得积分10
3秒前
wu完成签到,获得积分10
3秒前
nanjiren发布了新的文献求助10
4秒前
4秒前
明理的亦寒完成签到 ,获得积分10
4秒前
英俊的铭应助聪慧的正豪采纳,获得10
4秒前
5秒前
5秒前
胸有激雷面如平湖完成签到,获得积分10
5秒前
5秒前
5秒前
Zzz完成签到,获得积分10
5秒前
5秒前
jyh完成签到 ,获得积分10
6秒前
Ansaista发布了新的文献求助30
6秒前
呸呸晓鹏完成签到,获得积分20
6秒前
Akim应助美满的惜霜采纳,获得10
6秒前
冷酷学姐完成签到 ,获得积分10
7秒前
7秒前
小杭76应助ZIVON采纳,获得10
7秒前
花楹发布了新的文献求助10
7秒前
8秒前
欣喜石头发布了新的文献求助20
8秒前
2856256105发布了新的文献求助10
8秒前
orixero应助1134695021采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563