Mass Customization and the “Parts-Procurement Planning Problem”

灵活性(工程) 大规模定制 采购 计算机科学 航程(航空) 运筹学 集合(抽象数据类型) 工业工程 组分(热力学) 数学优化 个性化 运营管理 经济 数学 工程类 统计 航空航天工程 万维网 物理 管理 程序设计语言 热力学
作者
Ali Fattahi,Sriram Dasu,Reza Ahmadi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (8): 5778-5797 被引量:3
标识
DOI:10.1287/mnsc.2021.4172
摘要

We study a new parts-procurement planning problem that is motivated by a global auto manufacturer (GAM) that practices mass customization. Because of the astronomically large number of producible configurations, forecasting their demand is impossible. Instead, firms forecast demand for options that constitute a vehicle. Requirements for many parts (up to 60%) are based on the combinations of options in a fully configured vehicle. The options’ forecast, however, does not map into a unique configuration-level forecast. As a result, the options’ forecast translates into ranges for many parts’ requirements. The combined ranges of a set of parts are not always equal to the sum of the component ranges; they may be less. Determining parts ranges is a large-scale NP-hard problem. Large ranges and inaccurate calculation of these ranges can result in excess inventories, shortages in inventories, and suboptimal flexibility levels. We model and analyze the problem of allocating parts to suppliers and accurately computing the ranges to minimize procurement costs arising because of ranges. The range costs are assumed to be convex increasing. We perform extensive numerical analysis using a large set of randomly generated instances as well as eight industrial instances received from GAM to establish the quality of our approximation framework. Our proposed approach significantly reduces the error in range estimates relative to current industry practice. In addition, the proposed approach for allocations of parts to suppliers reduces joint-parts ranges by an average of 29.87% relative to that of current practice. This paper was accepted by Jeannette Song, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ehgnix发布了新的文献求助10
1秒前
Summer完成签到,获得积分10
2秒前
Hello应助杨小王采纳,获得30
3秒前
天天快乐应助ayan采纳,获得10
3秒前
搜集达人应助qgf采纳,获得10
5秒前
Crystal发布了新的文献求助10
6秒前
6秒前
等等完成签到,获得积分10
8秒前
13秒前
14秒前
LEOKIM完成签到,获得积分10
14秒前
15秒前
15秒前
小李吃小孩应助Harlotte采纳,获得10
16秒前
pd发布了新的文献求助10
16秒前
16秒前
徐旖旎完成签到,获得积分10
17秒前
17秒前
qgf发布了新的文献求助10
18秒前
SilverPlane发布了新的文献求助10
19秒前
ayan发布了新的文献求助10
19秒前
19秒前
Owen应助沉默高跟鞋采纳,获得50
20秒前
Wei应助好好好采纳,获得10
21秒前
hhq发布了新的文献求助10
21秒前
橙橙完成签到 ,获得积分10
22秒前
芽芽关注了科研通微信公众号
22秒前
大模型应助舒适的平蓝采纳,获得10
22秒前
橙子发布了新的文献求助10
23秒前
俏皮大树完成签到 ,获得积分10
23秒前
kingwill举报快乐的冰巧求助涉嫌违规
24秒前
wwwww发布了新的文献求助10
24秒前
amour完成签到 ,获得积分10
25秒前
怡然万声完成签到,获得积分10
26秒前
26秒前
传奇3应助tjfwg采纳,获得10
26秒前
26秒前
斯文败类应助zsy采纳,获得10
27秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736127
求助须知:如何正确求助?哪些是违规求助? 3279878
关于积分的说明 10017530
捐赠科研通 2996558
什么是DOI,文献DOI怎么找? 1644147
邀请新用户注册赠送积分活动 781808
科研通“疑难数据库(出版商)”最低求助积分说明 749475