Mass Customization and the “Parts-Procurement Planning Problem”

灵活性(工程) 大规模定制 采购 计算机科学 航程(航空) 运筹学 集合(抽象数据类型) 工业工程 组分(热力学) 数学优化 个性化 运营管理 经济 数学 工程类 统计 航空航天工程 万维网 物理 管理 程序设计语言 热力学
作者
Ali Fattahi,Sriram Dasu,Reza Ahmadi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (8): 5778-5797 被引量:3
标识
DOI:10.1287/mnsc.2021.4172
摘要

We study a new parts-procurement planning problem that is motivated by a global auto manufacturer (GAM) that practices mass customization. Because of the astronomically large number of producible configurations, forecasting their demand is impossible. Instead, firms forecast demand for options that constitute a vehicle. Requirements for many parts (up to 60%) are based on the combinations of options in a fully configured vehicle. The options’ forecast, however, does not map into a unique configuration-level forecast. As a result, the options’ forecast translates into ranges for many parts’ requirements. The combined ranges of a set of parts are not always equal to the sum of the component ranges; they may be less. Determining parts ranges is a large-scale NP-hard problem. Large ranges and inaccurate calculation of these ranges can result in excess inventories, shortages in inventories, and suboptimal flexibility levels. We model and analyze the problem of allocating parts to suppliers and accurately computing the ranges to minimize procurement costs arising because of ranges. The range costs are assumed to be convex increasing. We perform extensive numerical analysis using a large set of randomly generated instances as well as eight industrial instances received from GAM to establish the quality of our approximation framework. Our proposed approach significantly reduces the error in range estimates relative to current industry practice. In addition, the proposed approach for allocations of parts to suppliers reduces joint-parts ranges by an average of 29.87% relative to that of current practice. This paper was accepted by Jeannette Song, operations management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑立轩完成签到,获得积分10
刚刚
刚刚
鼠大帅发布了新的文献求助10
1秒前
8秒前
超级瑶瑶发布了新的文献求助10
14秒前
林夕完成签到,获得积分10
20秒前
orixero应助萨尔莫斯采纳,获得10
25秒前
呜呜发布了新的文献求助10
26秒前
26秒前
行走的猫完成签到 ,获得积分10
27秒前
28秒前
tracer526发布了新的文献求助10
30秒前
优雅的女神完成签到,获得积分10
31秒前
ikutovaya完成签到,获得积分10
32秒前
理躺丁真完成签到,获得积分10
33秒前
35秒前
SJD完成签到,获得积分0
36秒前
呜呜完成签到,获得积分10
36秒前
领导范儿应助超级瑶瑶采纳,获得10
37秒前
萨尔莫斯发布了新的文献求助10
38秒前
科研通AI6应助蟹黄丸子采纳,获得30
39秒前
可靠小懒虫完成签到,获得积分10
40秒前
今后应助善良的广缘采纳,获得10
40秒前
欢喜的早晨完成签到,获得积分10
44秒前
英俊的铭应助tracer526采纳,获得10
45秒前
彭于晏应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
orixero应助科研通管家采纳,获得10
46秒前
蓝天应助科研通管家采纳,获得10
46秒前
大个应助科研通管家采纳,获得10
46秒前
梦将军应助科研通管家采纳,获得10
46秒前
梁jj应助科研通管家采纳,获得30
46秒前
FashionBoy应助科研通管家采纳,获得10
46秒前
shhoing应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
Zewen_Li应助科研通管家采纳,获得10
47秒前
XY应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
蓝天应助科研通管家采纳,获得10
47秒前
英俊的铭应助科研通管家采纳,获得30
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963