Mass Customization and the “Parts-Procurement Planning Problem”

灵活性(工程) 大规模定制 采购 计算机科学 航程(航空) 运筹学 集合(抽象数据类型) 工业工程 组分(热力学) 数学优化 个性化 运营管理 经济 数学 工程类 统计 航空航天工程 万维网 物理 管理 程序设计语言 热力学
作者
Ali Fattahi,Sriram Dasu,Reza Ahmadi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (8): 5778-5797 被引量:3
标识
DOI:10.1287/mnsc.2021.4172
摘要

We study a new parts-procurement planning problem that is motivated by a global auto manufacturer (GAM) that practices mass customization. Because of the astronomically large number of producible configurations, forecasting their demand is impossible. Instead, firms forecast demand for options that constitute a vehicle. Requirements for many parts (up to 60%) are based on the combinations of options in a fully configured vehicle. The options’ forecast, however, does not map into a unique configuration-level forecast. As a result, the options’ forecast translates into ranges for many parts’ requirements. The combined ranges of a set of parts are not always equal to the sum of the component ranges; they may be less. Determining parts ranges is a large-scale NP-hard problem. Large ranges and inaccurate calculation of these ranges can result in excess inventories, shortages in inventories, and suboptimal flexibility levels. We model and analyze the problem of allocating parts to suppliers and accurately computing the ranges to minimize procurement costs arising because of ranges. The range costs are assumed to be convex increasing. We perform extensive numerical analysis using a large set of randomly generated instances as well as eight industrial instances received from GAM to establish the quality of our approximation framework. Our proposed approach significantly reduces the error in range estimates relative to current industry practice. In addition, the proposed approach for allocations of parts to suppliers reduces joint-parts ranges by an average of 29.87% relative to that of current practice. This paper was accepted by Jeannette Song, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy123发布了新的文献求助10
刚刚
无花果应助Zzskrrrr采纳,获得10
1秒前
1秒前
2秒前
深情安青应助菜鸡学VASP采纳,获得10
3秒前
善学以致用应助ShaLi123采纳,获得10
3秒前
3秒前
科目三应助Matthewwt采纳,获得10
4秒前
www发布了新的文献求助10
4秒前
hhh完成签到,获得积分10
4秒前
4秒前
5秒前
去看海嘛应助South朝484采纳,获得10
5秒前
6秒前
6秒前
6秒前
哎嘿应助文静的翠安采纳,获得10
6秒前
6秒前
无花果应助elsker采纳,获得10
6秒前
完美的冰绿应助hyhyhyhy采纳,获得10
6秒前
summer完成签到,获得积分10
6秒前
yufeng完成签到,获得积分10
7秒前
hhh发布了新的文献求助10
8秒前
Cu完成签到,获得积分10
8秒前
淡水痕发布了新的文献求助10
8秒前
8秒前
jiayouYi发布了新的文献求助10
8秒前
feng发布了新的文献求助30
8秒前
没出门应助我爱科研111采纳,获得10
8秒前
9秒前
9秒前
美好寒梦完成签到,获得积分10
10秒前
11秒前
山见山发布了新的文献求助30
11秒前
充电宝应助滴滴滴开车啦采纳,获得10
11秒前
高兴小猫咪完成签到,获得积分10
11秒前
小二郎应助www采纳,获得10
11秒前
bear完成签到,获得积分10
11秒前
11秒前
w934420513完成签到,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151396
求助须知:如何正确求助?哪些是违规求助? 2802862
关于积分的说明 7850843
捐赠科研通 2460290
什么是DOI,文献DOI怎么找? 1309701
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760