Long-range correlation analysis of high frequency prefrontal electroencephalogram oscillations for dynamic emotion recognition

去趋势波动分析 赫斯特指数 脑电图 厌恶 相关性 频率分析 前额叶皮质 愤怒 模式识别(心理学) 心理学 数学 人工智能 计算机科学 统计 认知 神经科学 几何学 精神科 缩放比例
作者
Zhilin Gao,Xingran Cui,Wang Wan,Wenming Zheng,Zhongze Gu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:72: 103291-103291 被引量:13
标识
DOI:10.1016/j.bspc.2021.103291
摘要

Numerous previous studies have proved the enormous potential of high frequency EEG in emotion recognition, however, the current existing EEG analytic methods are not so effective when dealing with high frequency oscillations. Therefore, a novel refined-detrended fluctuation analysis method multi-order detrended fluctuation analysis (MODFA) was proposed. The best fitting order is selected according to the inflection point in the dependence degree curve of high frequency EEG and multi-order polynomial. MODFA measures the power-law long-range correlation of high frequency nonlinear signals. Prefrontal EEG signals were recorded during six emotion-inducing tasks (neutral, fear, sad, happy, anger, and disgust). To confirm the susceptibility and efficiency of MODFA indices, including hurst-exponent MODFA-h1 and intercept MODFA-a1, on emotion recognition, we compared MODFA with original detrended fluctuation analysis, as well as the conventionally used fuzzy entropy (FE) and power spectral density (PSD) on high frequency EEG oscillations (62.50–93.75 Hz). The results showed that MODFA achieved the best performance in binary emotion classification (positive and negative, accuracy = 96.81%), ternary classification (neutral, positive, and negative, accuracy = 76.39%), and six-classification (accuracy = 42.17%). Moreover, along with inducing time, the cumulative effects of the four negative emotions (fear, sad, anger, and disgust) were observed by MODFA-a1, FE, and PSD, which demonstrated that the accumulation of negative emotions are associated with the prefrontal lobe and could be measured via high frequency gamma rhythms. These findings indicated the nonlinear dynamics of high frequency brain activity during emotion induction, and the prefrontal EEG-based emotion recognition might have great application prospect in real-life practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助酷炫的友易采纳,获得10
刚刚
初期发布了新的文献求助10
刚刚
quhayley应助Billy采纳,获得10
3秒前
Jiang湫完成签到 ,获得积分10
3秒前
隐形曼青应助Delia采纳,获得10
4秒前
zhaoman完成签到,获得积分10
4秒前
4秒前
4秒前
星河发布了新的文献求助10
4秒前
Hcir完成签到 ,获得积分10
5秒前
5秒前
嘻嘻发布了新的文献求助10
6秒前
静不净发布了新的文献求助10
7秒前
Lilili发布了新的文献求助10
7秒前
池寒1发布了新的文献求助10
7秒前
彭于晏应助小小采纳,获得10
8秒前
8秒前
胡恒源发布了新的文献求助10
8秒前
8秒前
狂野元枫完成签到,获得积分10
9秒前
科研通AI2S应助xzh采纳,获得10
10秒前
hh发布了新的文献求助10
11秒前
纳米粒子完成签到,获得积分10
11秒前
直率的宛海完成签到,获得积分10
11秒前
93完成签到 ,获得积分10
12秒前
12秒前
通宵完成签到 ,获得积分10
12秒前
12秒前
13秒前
MiManchi完成签到,获得积分10
13秒前
超帅凡阳发布了新的文献求助10
13秒前
rachel03发布了新的文献求助10
14秒前
称心的半山完成签到,获得积分10
14秒前
胡恒源完成签到,获得积分10
14秒前
hh完成签到,获得积分10
15秒前
飞飞关注了科研通微信公众号
15秒前
大模型应助哈哈嗝采纳,获得10
16秒前
沉默是金12完成签到 ,获得积分0
16秒前
薰硝壤应助lk65734采纳,获得50
16秒前
盐好香完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148856
求助须知:如何正确求助?哪些是违规求助? 2799869
关于积分的说明 7837518
捐赠科研通 2457441
什么是DOI,文献DOI怎么找? 1307837
科研通“疑难数据库(出版商)”最低求助积分说明 628280
版权声明 601685