Self supervised contrastive learning for digital histopathology

计算机科学 人工智能 机器学习 任务(项目管理) Boosting(机器学习) 监督学习 模式识别(心理学) 深度学习 人工神经网络 经济 管理
作者
Ozan Ciga,Tengteng Xu,Anne L. Martel
出处
期刊:Machine learning with applications [Elsevier]
卷期号:7: 100198-100198 被引量:50
标识
DOI:10.1016/j.mlwa.2021.100198
摘要

Unsupervised learning has been a long-standing goal of machine learning and is especially important for medical image analysis, where the learning can compensate for the scarcity of labeled datasets. A promising subclass of unsupervised learning is self-supervised learning, which aims to learn salient features using the raw input as the learning signal. In this work, we tackle the issue of learning domain-specific features without any supervision to improve multiple task performances that are of interest to the digital histopathology community. We apply a contrastive self-supervised learning method to digital histopathology by collecting and pretraining on 57 histopathology datasets without any labels. We find that combining multiple multi-organ datasets with different types of staining and resolution properties improves the quality of the learned features. Furthermore, we find using more images for pretraining leads to a better performance in multiple downstream tasks, albeit there are diminishing returns as more unlabeled images are incorporated into the pretraining. Linear classifiers trained on top of the learned features show that networks pretrained on digital histopathology datasets perform better than ImageNet pretrained networks, boosting task performances by more than 28% in F1 scores on average. Interestingly, we did not observe a consistent correlation between the pretraining dataset site or the organ versus the downstream task (e.g., pretraining with only breast images does not necessarily lead to a superior downstream task performance for breast-related tasks). These findings may also be useful when applying newer contrastive techniques to histopathology data. Pretrained PyTorch models are made publicly available at https://github.com/ozanciga/self-supervised-histopathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
起风完成签到,获得积分10
刚刚
Suzy完成签到,获得积分10
5秒前
6秒前
袁大头发布了新的文献求助10
7秒前
Mp4完成签到,获得积分10
9秒前
9秒前
善学以致用应助敏感时光采纳,获得10
12秒前
杰瑞院士发布了新的文献求助10
14秒前
慕青应助wangayting采纳,获得10
15秒前
16秒前
17秒前
落林樾完成签到 ,获得积分10
18秒前
邹修坤完成签到,获得积分20
18秒前
小鹿完成签到,获得积分20
18秒前
lisz77发布了新的文献求助80
18秒前
慕新完成签到,获得积分10
19秒前
GLZ6984完成签到,获得积分10
19秒前
22秒前
鲁路修发布了新的文献求助10
22秒前
杰瑞院士发布了新的文献求助10
24秒前
TT发布了新的文献求助10
24秒前
Orange应助Sun1c7采纳,获得10
24秒前
酷波er应助77采纳,获得10
25秒前
科研通AI2S应助碗碗采纳,获得10
27秒前
CynthiaaaCat完成签到,获得积分10
27秒前
科目三应助siso采纳,获得10
27秒前
大个应助Jeff采纳,获得10
29秒前
白鸽完成签到 ,获得积分10
30秒前
1461644768完成签到,获得积分10
32秒前
英姑应助杰瑞院士采纳,获得10
33秒前
万能图书馆应助杰瑞院士采纳,获得10
33秒前
34秒前
叶余完成签到,获得积分10
34秒前
36秒前
KrisTina发布了新的文献求助10
37秒前
IBMffff应助AJ采纳,获得10
37秒前
科研通AI2S应助邹修坤采纳,获得10
39秒前
秦春歌发布了新的文献求助10
40秒前
40秒前
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141127
求助须知:如何正确求助?哪些是违规求助? 2792031
关于积分的说明 7801479
捐赠科研通 2448267
什么是DOI,文献DOI怎么找? 1302482
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226