已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit

医学 队列 射线照相术 逻辑回归 接收机工作特性 脊柱侧凸 回顾性队列研究 人工智能 放射科 外科 内科学 计算机科学
作者
Hongfei Wang,Teng Zhang,Kenneth M.C. Cheung,Graham Ka‐Hon Shea
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:42: 101220-101220 被引量:10
标识
DOI:10.1016/j.eclinm.2021.101220
摘要

Prediction of curve progression risk in adolescent idiopathic scoliosis (AIS) remains elusive. Prior studies have revealed the potential for three-dimensional (3D) morphological parameters to prognosticate progression, but these require specialized biplanar imaging equipment and labor-intensive software reconstruction. This study aimed to formulate a deep learning model with standing posteroanterior (PA) X-rays at first clinic visit to differentiate between progressive (P) and non-progressive (NP) curves.For this retrospective cohort study, we identified patients presenting with AIS between October 2015 to April 2020 at our tertiary referral centre. Patients with mild curvatures (11 - 30o) who were skeletally immature (Risser sign of ≤2) were recruited. Patients receiving biplanar X-ray radiographs (EOS™) were divided between a training-cross-validation cohort (328 patients) and independent testing cohort (110 patients). Another 52 patients receiving standard PA spinal X-rays were recruited for cross-platform validation. Following 3D reconstruction, we designated the major curve apex upon PA X-rays as the region of interest (ROI) for machine learning. A self-attentive capsule network was constructed to differentiate between curves manifesting P and NP trajectories. A two-stage transfer learning strategy was introduced to pre-train and fine-tune the model. Model performance (accuracy, sensitivity, specificity) was compared to that of traditional convolutional neural networks (CNNs) and a clinical parameter-based logistic regression model.3D reconstruction identified that apical rotation of the major curve and torsion were significantly different between P and NP curve trajectories. Our predictive model utilizing an ROI centered on the major curve apex achieved an accuracy of 76.6%, a sensitivity of 75.2% and a specificity of 80.2% upon independent testing. Cross-platform performance upon standard standing PA X-rays yielded an accuracy of 77.1%, a sensitivity of 73.5% and a specificity of 81.0%. Errors in prediction occurred when the degree of apical rotation / torsion was discrepant from that of the subsequent curve trajectory but could be rectified by considering serial X-rays. Performance was superior to that of traditional CNNs as well as clinical parameter-based regression models.This is the first report of automated prediction of AIS curve progression based on radiomics and deep learning, towards directing treatment strategy at first visit. Patients predicted to be at-risk of progression may be counselled to receive early bracing with enforcement of treatment compliance. Over-treatment may be avoided in curves deemed to be non-progressive. Results need to be consolidated in larger sample populations of different ethnicities.The Society for the Relief of Disabled Children (SRDC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
连冬萱发布了新的文献求助10
刚刚
潜心如水完成签到,获得积分20
1秒前
充电宝应助楼少博采纳,获得10
2秒前
3秒前
默默襄发布了新的文献求助10
4秒前
5秒前
6秒前
wuwen完成签到,获得积分10
7秒前
珍珠发布了新的文献求助10
8秒前
爆米花应助喵喵喵采纳,获得10
10秒前
彩色雪柳发布了新的文献求助10
11秒前
12秒前
wuwen发布了新的文献求助10
12秒前
甜美帅哥完成签到 ,获得积分10
13秒前
16秒前
怎样发布了新的文献求助10
16秒前
连冬萱完成签到,获得积分20
16秒前
完美世界应助科研通管家采纳,获得10
18秒前
爆米花应助嫁个养熊猫的采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
共享精神应助朴实剑通采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
89完成签到,获得积分10
19秒前
19秒前
20秒前
一二完成签到,获得积分10
21秒前
嘎嘎的鸡神完成签到,获得积分10
21秒前
龚贤亮发布了新的文献求助10
21秒前
21秒前
清欢完成签到,获得积分20
22秒前
楼少博发布了新的文献求助10
23秒前
danli应助大雄采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957586
求助须知:如何正确求助?哪些是违规求助? 4218964
关于积分的说明 13132165
捐赠科研通 4001830
什么是DOI,文献DOI怎么找? 2190033
邀请新用户注册赠送积分活动 1204936
关于科研通互助平台的介绍 1116538