亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit

医学 队列 射线照相术 逻辑回归 接收机工作特性 脊柱侧凸 回顾性队列研究 人工智能 放射科 外科 内科学 计算机科学
作者
Hongfei Wang,Teng Zhang,Kenneth M.C. Cheung,Graham Ka‐Hon Shea
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:42: 101220-101220 被引量:10
标识
DOI:10.1016/j.eclinm.2021.101220
摘要

Prediction of curve progression risk in adolescent idiopathic scoliosis (AIS) remains elusive. Prior studies have revealed the potential for three-dimensional (3D) morphological parameters to prognosticate progression, but these require specialized biplanar imaging equipment and labor-intensive software reconstruction. This study aimed to formulate a deep learning model with standing posteroanterior (PA) X-rays at first clinic visit to differentiate between progressive (P) and non-progressive (NP) curves.For this retrospective cohort study, we identified patients presenting with AIS between October 2015 to April 2020 at our tertiary referral centre. Patients with mild curvatures (11 - 30o) who were skeletally immature (Risser sign of ≤2) were recruited. Patients receiving biplanar X-ray radiographs (EOS™) were divided between a training-cross-validation cohort (328 patients) and independent testing cohort (110 patients). Another 52 patients receiving standard PA spinal X-rays were recruited for cross-platform validation. Following 3D reconstruction, we designated the major curve apex upon PA X-rays as the region of interest (ROI) for machine learning. A self-attentive capsule network was constructed to differentiate between curves manifesting P and NP trajectories. A two-stage transfer learning strategy was introduced to pre-train and fine-tune the model. Model performance (accuracy, sensitivity, specificity) was compared to that of traditional convolutional neural networks (CNNs) and a clinical parameter-based logistic regression model.3D reconstruction identified that apical rotation of the major curve and torsion were significantly different between P and NP curve trajectories. Our predictive model utilizing an ROI centered on the major curve apex achieved an accuracy of 76.6%, a sensitivity of 75.2% and a specificity of 80.2% upon independent testing. Cross-platform performance upon standard standing PA X-rays yielded an accuracy of 77.1%, a sensitivity of 73.5% and a specificity of 81.0%. Errors in prediction occurred when the degree of apical rotation / torsion was discrepant from that of the subsequent curve trajectory but could be rectified by considering serial X-rays. Performance was superior to that of traditional CNNs as well as clinical parameter-based regression models.This is the first report of automated prediction of AIS curve progression based on radiomics and deep learning, towards directing treatment strategy at first visit. Patients predicted to be at-risk of progression may be counselled to receive early bracing with enforcement of treatment compliance. Over-treatment may be avoided in curves deemed to be non-progressive. Results need to be consolidated in larger sample populations of different ethnicities.The Society for the Relief of Disabled Children (SRDC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
聪明的云完成签到 ,获得积分10
10秒前
50秒前
量子星尘发布了新的文献求助10
1分钟前
朴素易梦完成签到,获得积分10
1分钟前
小马甲应助John采纳,获得10
1分钟前
kuoping完成签到,获得积分0
2分钟前
2分钟前
John完成签到,获得积分10
2分钟前
John发布了新的文献求助10
2分钟前
Ji完成签到,获得积分10
2分钟前
阔达白凡完成签到,获得积分10
2分钟前
桥西小河完成签到 ,获得积分10
2分钟前
TongKY完成签到 ,获得积分10
2分钟前
2分钟前
美丽的冰枫完成签到,获得积分10
2分钟前
义气的断秋完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助50
2分钟前
3分钟前
shee发布了新的文献求助10
3分钟前
3分钟前
研友_892kOL完成签到 ,获得积分10
3分钟前
shee完成签到,获得积分20
3分钟前
3分钟前
天天快乐应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
003完成签到,获得积分10
5分钟前
科研兵发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
我是老大应助科研兵采纳,获得10
5分钟前
001完成签到,获得积分10
5分钟前
昭荃完成签到 ,获得积分0
6分钟前
馆长完成签到,获得积分0
7分钟前
量子星尘发布了新的文献求助10
7分钟前
WebCasa完成签到,获得积分10
7分钟前
Lny应助科研通管家采纳,获得10
8分钟前
Lny应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827