Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit

医学 队列 射线照相术 逻辑回归 接收机工作特性 脊柱侧凸 回顾性队列研究 人工智能 放射科 外科 内科学 计算机科学
作者
Hongfei Wang,Teng Zhang,Kenneth M.C. Cheung,Graham Ka‐Hon Shea
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:42: 101220-101220 被引量:10
标识
DOI:10.1016/j.eclinm.2021.101220
摘要

Prediction of curve progression risk in adolescent idiopathic scoliosis (AIS) remains elusive. Prior studies have revealed the potential for three-dimensional (3D) morphological parameters to prognosticate progression, but these require specialized biplanar imaging equipment and labor-intensive software reconstruction. This study aimed to formulate a deep learning model with standing posteroanterior (PA) X-rays at first clinic visit to differentiate between progressive (P) and non-progressive (NP) curves.For this retrospective cohort study, we identified patients presenting with AIS between October 2015 to April 2020 at our tertiary referral centre. Patients with mild curvatures (11 - 30o) who were skeletally immature (Risser sign of ≤2) were recruited. Patients receiving biplanar X-ray radiographs (EOS™) were divided between a training-cross-validation cohort (328 patients) and independent testing cohort (110 patients). Another 52 patients receiving standard PA spinal X-rays were recruited for cross-platform validation. Following 3D reconstruction, we designated the major curve apex upon PA X-rays as the region of interest (ROI) for machine learning. A self-attentive capsule network was constructed to differentiate between curves manifesting P and NP trajectories. A two-stage transfer learning strategy was introduced to pre-train and fine-tune the model. Model performance (accuracy, sensitivity, specificity) was compared to that of traditional convolutional neural networks (CNNs) and a clinical parameter-based logistic regression model.3D reconstruction identified that apical rotation of the major curve and torsion were significantly different between P and NP curve trajectories. Our predictive model utilizing an ROI centered on the major curve apex achieved an accuracy of 76.6%, a sensitivity of 75.2% and a specificity of 80.2% upon independent testing. Cross-platform performance upon standard standing PA X-rays yielded an accuracy of 77.1%, a sensitivity of 73.5% and a specificity of 81.0%. Errors in prediction occurred when the degree of apical rotation / torsion was discrepant from that of the subsequent curve trajectory but could be rectified by considering serial X-rays. Performance was superior to that of traditional CNNs as well as clinical parameter-based regression models.This is the first report of automated prediction of AIS curve progression based on radiomics and deep learning, towards directing treatment strategy at first visit. Patients predicted to be at-risk of progression may be counselled to receive early bracing with enforcement of treatment compliance. Over-treatment may be avoided in curves deemed to be non-progressive. Results need to be consolidated in larger sample populations of different ethnicities.The Society for the Relief of Disabled Children (SRDC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴的叛逆者完成签到,获得积分10
7秒前
lxlcx完成签到,获得积分10
8秒前
Dr彭0923完成签到,获得积分10
11秒前
一一一多完成签到 ,获得积分10
11秒前
12秒前
田様应助遇见渔火采纳,获得10
12秒前
聪慧语山完成签到 ,获得积分10
14秒前
只爱医学不爱你完成签到 ,获得积分10
19秒前
孙栋完成签到,获得积分10
21秒前
Denning完成签到,获得积分10
24秒前
28秒前
hopen完成签到 ,获得积分10
34秒前
田様应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
InfoNinja应助科研通管家采纳,获得50
37秒前
研究新人完成签到,获得积分10
37秒前
岁月如酒应助科研通管家采纳,获得10
37秒前
庄怀逸完成签到 ,获得积分10
39秒前
1111发布了新的文献求助10
42秒前
重要山彤完成签到 ,获得积分10
47秒前
L_x完成签到 ,获得积分10
48秒前
传奇3应助珂珂子采纳,获得10
48秒前
小董完成签到,获得积分10
49秒前
Manzia完成签到,获得积分10
1分钟前
鞑靼完成签到 ,获得积分10
1分钟前
沙里飞完成签到 ,获得积分10
1分钟前
jensen完成签到,获得积分10
1分钟前
爱静静应助pping采纳,获得10
1分钟前
世间安得双全法完成签到,获得积分0
1分钟前
平常山河完成签到 ,获得积分10
1分钟前
香蕉觅云应助苗条的子默采纳,获得10
1分钟前
www完成签到 ,获得积分10
1分钟前
66完成签到,获得积分10
1分钟前
matt完成签到,获得积分10
1分钟前
Smoiy完成签到 ,获得积分10
1分钟前
miemie66完成签到,获得积分10
1分钟前
乒坛巨人完成签到 ,获得积分10
1分钟前
结实的德地完成签到,获得积分10
1分钟前
xiaofu完成签到,获得积分10
1分钟前
紫罗兰花海完成签到 ,获得积分10
1分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164826
求助须知:如何正确求助?哪些是违规求助? 2815925
关于积分的说明 7910592
捐赠科研通 2475504
什么是DOI,文献DOI怎么找? 1318250
科研通“疑难数据库(出版商)”最低求助积分说明 632035
版权声明 602296