Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation

灵敏度(控制系统) 压力传感器 可穿戴计算机 计算机科学 材料科学 噪音(视频) 可穿戴技术 压阻效应 生物医学工程 声学 模拟
作者
Hongcheng Xu,Libo Gao,Haitao Zhao,Hanlin Huang,Yuejiao Wang,Gang Chen,Yuxin Qin,Ningjuan Zhao,Dandan Xu,Ling Duan,Xuan Li,Li Siyu,Zhongbao Luo,Weidong Wang,Yang Lu
出处
期刊:Microsystems & Nanoengineering [Springer Nature]
卷期号:7 (1) 被引量:1
标识
DOI:10.1038/s41378-021-00318-2
摘要

Abstract Monitoring biophysical signals such as body or organ movements and other physical phenomena is necessary for patient rehabilitation. However, stretchable flexible pressure sensors with high sensitivity and a broad range that can meet these requirements are still lacking. Herein, we successfully monitored various vital biophysical features and implemented in-sensor dynamic deep learning for knee rehabilitation using an ultrabroad linear range and high-sensitivity stretchable iontronic pressure sensor (SIPS). We optimized the topological structure and material composition of the electrode to build a fully stretching on-skin sensor. The high sensitivity (12.43 kPa −1 ), ultrabroad linear sensing range (1 MPa), high pressure resolution (6.4 Pa), long-term durability (no decay after 12000 cycles), and excellent stretchability (up to 20%) allow the sensor to maintain operating stability, even in emergency cases with a high sudden impact force (near 1 MPa) applied to the sensor. As a practical demonstration, the SIPS can positively track biophysical signals such as pulse waves, muscle movements, and plantar pressure. Importantly, with the help of a neuro-inspired fully convolutional network algorithm, the SIPS can accurately predict knee joint postures for better rehabilitation after orthopedic surgery. Our SIPS has potential as a promising candidate for wearable electronics and artificial intelligent medical engineering owing to its unique high signal-to-noise ratio and ultrabroad linear range.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Keping发布了新的文献求助10
1秒前
Bo发布了新的文献求助10
1秒前
上官若男应助echo采纳,获得10
1秒前
六号线完成签到,获得积分10
1秒前
小蘑菇应助温婉的念文采纳,获得10
1秒前
NexusExplorer应助潮汐采纳,获得10
1秒前
xi发布了新的文献求助10
1秒前
2秒前
柚子完成签到,获得积分10
2秒前
是阿刁完成签到,获得积分10
2秒前
Lightdream__完成签到,获得积分10
2秒前
2秒前
小筱发布了新的文献求助10
3秒前
3秒前
ly完成签到,获得积分20
3秒前
空古悠浪发布了新的文献求助10
3秒前
无花果应助penguinli采纳,获得10
3秒前
sivan发布了新的文献求助10
3秒前
king完成签到,获得积分10
4秒前
TristanGuan发布了新的文献求助10
4秒前
4秒前
打打应助李端端采纳,获得10
4秒前
wanci应助铃儿响叮党采纳,获得10
5秒前
BowieHuang应助inininch采纳,获得50
6秒前
充电宝应助一口一个汤包采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
Liandong应助li采纳,获得10
6秒前
big龙发布了新的文献求助10
7秒前
7秒前
Lucas应助研友_ZrBNxZ采纳,获得30
7秒前
Tici完成签到,获得积分10
7秒前
墨染完成签到 ,获得积分10
8秒前
dahua完成签到,获得积分10
8秒前
无花果应助zss采纳,获得10
8秒前
8秒前
king发布了新的文献求助10
8秒前
8秒前
体贴凌柏发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534