Influence of plasma power on deposition mechanism and structural properties of MoOx thin films by plasma enhanced atomic layer deposition

原子层沉积 X射线光电子能谱 沉积(地质) 等离子体 无定形固体 图层(电子) 薄膜 材料科学 分析化学(期刊) 化学工程 化学 纳米技术 物理 结晶学 冶金 工程类 生物 沉积物 古生物学 量子力学 色谱法
作者
Chen Wang,Chun-Hui Bao,Wan-Yu Wu,Chia‐Hsun Hsu,Ming-Jie Zhao,Shui‐Yang Lien,Wen‐Zhang Zhu
出处
期刊:Journal of vacuum science & technology [American Vacuum Society]
卷期号:39 (3) 被引量:2
标识
DOI:10.1116/6.0000968
摘要

In this study, amorphous films of molybdenum oxide (MoOx) had been prepared by plasma enhanced atomic layer deposition (PEALD) technique using molybdenum hexacarbonyl (Mo(CO)6) as a metal precursor and the mixture gas of O2/Ar as reactants. The influence of plasma power from 1000–3000 W on PEALD-MoOx films’ structure properties was investigated, and the deposition mechanism was proposed. Based on the results, the plasma power playing a crucial role in depositing MoOx films is concluded. A maximum deposition rate of MoOx films is 0.76 Å/cycle, which is achieved at the optimal plasma power of 2000 W owing to the enhancement of plasma radicals’ intensity. The Mo5+ and Mo6+ oxidation states that emerged in all the films were illustrated by x-ray photoelectron spectroscopy studies, which means oxygen deficiency in substoichiometric MoOx films. The proportion of no-lattice oxygen decreases first and then increases with the increase of the plasma power. A low power and a high power may lead to deficient oxidation and obvious ion bombardment effect, respectively, which lead to the reduction of MoOx film quality, as indicated by the refractive index, atomic force microscopy, and scanning electron microscopy. The clarification of the effect of plasma power on PEALD-MoOx thin films is greatly beneficial to the application in high performance electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戏言121发布了新的文献求助10
刚刚
刚刚
1秒前
优雅的流沙完成签到 ,获得积分10
2秒前
猫的海完成签到,获得积分10
2秒前
2秒前
Eason Liu完成签到,获得积分0
3秒前
Wendy1204完成签到,获得积分20
3秒前
Hello应助654采纳,获得10
3秒前
咩咩羊完成签到,获得积分10
3秒前
7秒前
lianqing完成签到,获得积分10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
8秒前
RC_Wang应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
hh应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得30
8秒前
8秒前
Leif应助科研通管家采纳,获得20
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
忘羡222发布了新的文献求助20
11秒前
丰富猕猴桃完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
JamesPei应助咿咿呀呀采纳,获得10
12秒前
www完成签到,获得积分10
12秒前
科研通AI2S应助Jenny采纳,获得10
13秒前
limin完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824