钝化
材料科学
钙钛矿(结构)
能量转换效率
杂原子
平面的
光致发光
热稳定性
光电子学
降级(电信)
电化学
纳米技术
化学工程
电极
化学
戒指(化学)
物理化学
图层(电子)
有机化学
电子工程
工程类
计算机图形学(图像)
计算机科学
作者
Cansu Igci,Hiroyuki Kanda,So‐Min Yoo,Albertus Adrian Sutanto,Olga A. Syzgantseva,Maria A. Syzgantseva,Vygintas Jankauskas,Kasparas Rakštys,Mounir Mensi,Hobeom Kim,Abdullah M. Asiri,Mohammad Khaja Nazeeruddin
出处
期刊:Solar RRL
[Wiley]
日期:2021-11-25
卷期号:6 (1)
被引量:9
标识
DOI:10.1002/solr.202100667
摘要
Three benzodipyrrole (BDP)‐based organic small molecules with substituted 4‐methoxyphenyl (CB‐1), 3‐fluorophenyl (CB‐2), and 3‐trifluoromethylphenyl (CB‐3) are designed, synthesized, and used as a hole‐transporting material (HTM) for perovskite solar cells (PSCs). The electrochemical, optical, thermal, electronic, and optoelectronic properties of the HTMs are characterized to verify their suitability for PSCs. The terminal functional groups of the HTMs having different heteroatoms mainly target effective defect passivation of perovskites. Photoluminescence studies and molecular dynamic simulations reveal that fluorine atoms within CB‐2 and CB‐3 can contribute to the defect passivation via interaction with Pb of the perovskite. In particular, a highly planar conformation of CB‐2 on the perovskite surface can facilitate more efficient hole transfer at the interface. Thus, the PSCs employing CB‐2 achieve the highest power conversion efficiency (PCE) of 18.23% while the devices using CB‐1 and CB‐3 exhibit a lower PCE of 16.78% and 16.74%, respectively. PSCs with the BDP‐based HTMs demonstrate excellent long‐term storage stability without degradation in their PCEs over 6 months. The highly planar geometry, defect passivation effect, and hydrophobicity of CB‐2 show its great potential as an HTM for efficient and stable PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI