A subgraph matching algorithm based on subgraph index for knowledge graph

图因式分解 距离遗传图 计算机科学 子图同构问题 图形 诱导子图同构问题 折线图 理论计算机科学 组合数学 匹配(统计) 因子临界图 算法 数学 图形功率 电压图 统计
作者
Yunhao Sun,Guanyu Li,Jingjing Du,Bo Ning,Heng Chen
出处
期刊:Frontiers of Computer Science [Higher Education Press]
卷期号:16 (3) 被引量:20
标识
DOI:10.1007/s11704-020-0360-y
摘要

The problem of subgraph matching is one fundamental issue in graph search, which is NP-Complete problem. Recently, subgraph matching has become a popular research topic in the field of knowledge graph analysis, which has a wide range of applications including question answering and semantic search. In this paper, we study the problem of subgraph matching on knowledge graph. Specifically, given a query graph q and a data graph G, the problem of subgraph matching is to conduct all possible subgraph isomorphic mappings of q on G. Knowledge graph is formed as a directed labeled multi-graph having multiple edges between a pair of vertices and it has more dense semantic and structural features than general graph. To accelerate subgraph matching on knowledge graph, we propose a novel subgraph matching algorithm based on subgraph index for knowledge graph, called as FGqT-Match. The subgraph matching algorithm consists of two key designs. One design is a subgraph index of matching-driven flow graph (FGqT), which reduces redundant calculations in advance. Another design is a multi-label weight matrix, which evaluates a near-optimal matching tree for minimizing the intermediate candidates. With the aid of these two key designs, all subgraph isomorphic mappings are quickly conducted only by traversing FGqT. Extensive empirical studies on real and synthetic graphs demonstrate that our techniques outperform the state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助卷毛的好青年采纳,获得30
刚刚
刚刚
easymoney完成签到,获得积分10
刚刚
xiaojin完成签到,获得积分10
1秒前
弓長玉王令完成签到 ,获得积分10
1秒前
xue完成签到,获得积分10
1秒前
星辰大海应助无昵称采纳,获得10
1秒前
星星发布了新的文献求助10
2秒前
优雅采文发布了新的文献求助10
2秒前
安之若素完成签到,获得积分10
2秒前
金金发布了新的文献求助10
2秒前
执笔完成签到,获得积分10
2秒前
畅快访蕊完成签到,获得积分10
3秒前
3秒前
3秒前
嗜血啊阳完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
胡萝卜发布了新的文献求助10
4秒前
言午发布了新的文献求助200
4秒前
111完成签到 ,获得积分10
6秒前
眼睛大的比巴卜完成签到,获得积分10
6秒前
6秒前
共享精神应助buzhinianjiu采纳,获得10
6秒前
6秒前
淡淡的白羊完成签到 ,获得积分10
7秒前
7秒前
慕青应助欧欧欧导采纳,获得10
7秒前
赘婿应助HXie采纳,获得10
7秒前
7秒前
州府十三发布了新的文献求助30
8秒前
dudu发布了新的文献求助10
8秒前
9秒前
9秒前
风趣安青发布了新的文献求助10
9秒前
Lucas应助biubiubiu采纳,获得10
9秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969222
求助须知:如何正确求助?哪些是违规求助? 3514124
关于积分的说明 11171948
捐赠科研通 3249361
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875431
科研通“疑难数据库(出版商)”最低求助积分说明 804779