Improvements to PTSD quality metrics with natural language processing

退伍军人事务部 文档 医学 病历 授权 质量管理 质量(理念) 循证实践 数据质量 自然语言处理 计算机科学 替代医学 病理 运营管理 经济 公制(单位) 政治学 管理制度 程序设计语言 法学 哲学 放射科 内科学 认识论
作者
Brian Shiner,Maxwell Levis,Vincent Dufort,Olga V. Patterson,Bradley V. Watts,Scott L. DuVall,Carey J. Russ,Shira Maguen
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:28 (4): 520-530 被引量:26
标识
DOI:10.1111/jep.13587
摘要

Abstract Rationale aims and objectives As quality measurement becomes increasingly reliant on the availability of structured electronic medical record (EMR) data, clinicians are asked to perform documentation using tools that facilitate data capture. These tools may not be available, feasible, or acceptable in all clinical scenarios. Alternative methods of assessment, including natural language processing (NLP) of clinical notes, may improve the completeness of quality measurement in real‐world practice. Our objective was to measure the quality of care for a set of evidence‐based practices using structured EMR data alone, and then supplement those measures with additional data derived from NLP. Method As a case example, we studied the quality of care for posttraumatic stress disorder (PTSD) in the United States Department of Veterans Affairs (VA) over a 20‐year period. We measured two aspects of PTSD care, including delivery of evidence‐based psychotherapy (EBP) and associated use of measurement‐based care (MBC), using structured EMR data. We then recalculated these measures using additional data derived from NLP of clinical note text. Results There were 2 098 389 VA patients with a diagnosis of PTSD between 2000 and 2019, 72% ( n = 1 515 345) of whom had not previously received EBP for PTSD and were treated after a 2015 mandate to document EBP using templates that generate structured EMR data. Using structured EMR data, we determined that 3.2% ( n = 48 004) of those patients met our EBP for PTSD quality standard between 2015 and 2019, and 48.1% ( n = 23 088) received associated MBC. With the addition of NLP‐derived data, estimates increased to 4.1% ( n = 62 789) and 58.0% ( n = 36 435), respectively. Conclusion Healthcare quality data can be significantly improved by supplementing structured EMR data with NLP‐derived data. By using NLP, health systems may be able to fill the gaps in documentation when structured tools are not yet available or there are barriers to using them in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科科克尔克完成签到 ,获得积分10
刚刚
o10发布了新的文献求助10
1秒前
火星上的羽毛应助怪杰采纳,获得10
3秒前
3秒前
阔达的寻菡完成签到,获得积分10
3秒前
SYLH应助to高坚果采纳,获得10
5秒前
酷小裤发布了新的文献求助10
6秒前
淡定海亦完成签到,获得积分10
7秒前
8秒前
9秒前
asdsfz发布了新的文献求助10
10秒前
上官若男应助star采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
ajun完成签到,获得积分10
15秒前
帅气的襄发布了新的文献求助10
15秒前
FartKing发布了新的文献求助20
16秒前
浊人完成签到,获得积分10
18秒前
眼睛大的电脑完成签到 ,获得积分10
19秒前
20秒前
22秒前
23秒前
每天都在找完成签到,获得积分10
24秒前
高兴123发布了新的文献求助30
24秒前
JINITAIMEI发布了新的文献求助30
25秒前
tianqing完成签到,获得积分10
25秒前
25秒前
希望天下0贩的0应助asdsfz采纳,获得10
27秒前
acorn发布了新的文献求助10
28秒前
是玥玥啊发布了新的文献求助10
29秒前
大模型应助dhh采纳,获得10
29秒前
31秒前
31秒前
32秒前
在水一方应助acorn采纳,获得10
33秒前
哈哈发布了新的文献求助10
33秒前
li完成签到 ,获得积分10
35秒前
浅夏发布了新的文献求助10
36秒前
dhh完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309