退伍军人事务部
文档
医学
病历
授权
质量管理
质量(理念)
循证实践
数据质量
自然语言处理
计算机科学
替代医学
病理
运营管理
经济
公制(单位)
政治学
管理制度
程序设计语言
法学
哲学
放射科
内科学
认识论
作者
Brian Shiner,Maxwell Levis,Vincent Dufort,Olga V. Patterson,Bradley V. Watts,Scott L. DuVall,Carey J. Russ,Shira Maguen
摘要
Abstract Rationale aims and objectives As quality measurement becomes increasingly reliant on the availability of structured electronic medical record (EMR) data, clinicians are asked to perform documentation using tools that facilitate data capture. These tools may not be available, feasible, or acceptable in all clinical scenarios. Alternative methods of assessment, including natural language processing (NLP) of clinical notes, may improve the completeness of quality measurement in real‐world practice. Our objective was to measure the quality of care for a set of evidence‐based practices using structured EMR data alone, and then supplement those measures with additional data derived from NLP. Method As a case example, we studied the quality of care for posttraumatic stress disorder (PTSD) in the United States Department of Veterans Affairs (VA) over a 20‐year period. We measured two aspects of PTSD care, including delivery of evidence‐based psychotherapy (EBP) and associated use of measurement‐based care (MBC), using structured EMR data. We then recalculated these measures using additional data derived from NLP of clinical note text. Results There were 2 098 389 VA patients with a diagnosis of PTSD between 2000 and 2019, 72% ( n = 1 515 345) of whom had not previously received EBP for PTSD and were treated after a 2015 mandate to document EBP using templates that generate structured EMR data. Using structured EMR data, we determined that 3.2% ( n = 48 004) of those patients met our EBP for PTSD quality standard between 2015 and 2019, and 48.1% ( n = 23 088) received associated MBC. With the addition of NLP‐derived data, estimates increased to 4.1% ( n = 62 789) and 58.0% ( n = 36 435), respectively. Conclusion Healthcare quality data can be significantly improved by supplementing structured EMR data with NLP‐derived data. By using NLP, health systems may be able to fill the gaps in documentation when structured tools are not yet available or there are barriers to using them in clinical practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI