Using Artificial Intelligence With Natural Language Processing to Combine Electronic Health Record’s Structured and Free Text Data to Identify Nonvalvular Atrial Fibrillation to Decrease Strokes and Death: Evaluation and Case-Control Study

医学 心房颤动 冲程(发动机) 自然史 心力衰竭 糖尿病 诊断代码 电子健康档案 内科学 人口 急诊医学 重症监护医学 医疗保健 经济 内分泌学 工程类 环境卫生 机械工程 经济增长
作者
Peter L. Elkin,Sarah Mullin,Jack Mardekian,Christopher Crowner,Sylvester Sakilay,Shyamashree Sinha,Gary Brady,Marcia Wright,Kimberly Nolen,JoAnn Trainer,Ross Koppel,Daniel Schlegel,Sashank Kaushik,Jane Zhao,Buer Song,Edwin Anand
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (11): e28946-e28946 被引量:25
标识
DOI:10.2196/28946
摘要

Nonvalvular atrial fibrillation (NVAF) affects almost 6 million Americans and is a major contributor to stroke but is significantly undiagnosed and undertreated despite explicit guidelines for oral anticoagulation.The aim of this study is to investigate whether the use of semisupervised natural language processing (NLP) of electronic health record's (EHR) free-text information combined with structured EHR data improves NVAF discovery and treatment and perhaps offers a method to prevent thousands of deaths and save billions of dollars.We abstracted 96,681 participants from the University of Buffalo faculty practice's EHR. NLP was used to index the notes and compare the ability to identify NVAF, congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke or transient ischemic attack, vascular disease, age 65 to 74 years, sex category (CHA2DS2-VASc), and Hypertension, Abnormal liver/renal function, Stroke history, Bleeding history or predisposition, Labile INR, Elderly, Drug/alcohol usage (HAS-BLED) scores using unstructured data (International Classification of Diseases codes) versus structured and unstructured data from clinical notes. In addition, we analyzed data from 63,296,120 participants in the Optum and Truven databases to determine the NVAF frequency, rates of CHA2DS2‑VASc ≥2, and no contraindications to oral anticoagulants, rates of stroke and death in the untreated population, and first year's costs after stroke.The structured-plus-unstructured method would have identified 3,976,056 additional true NVAF cases (P<.001) and improved sensitivity for CHA2DS2-VASc and HAS-BLED scores compared with the structured data alone (P=.002 and P<.001, respectively), causing a 32.1% improvement. For the United States, this method would prevent an estimated 176,537 strokes, save 10,575 lives, and save >US $13.5 billion.Artificial intelligence-informed bio-surveillance combining NLP of free-text information with structured EHR data improves data completeness, prevents thousands of strokes, and saves lives and funds. This method is applicable to many disorders with profound public health consequences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IL556完成签到 ,获得积分10
1秒前
八月完成签到,获得积分10
2秒前
李zhu完成签到,获得积分20
2秒前
3秒前
领导范儿应助迷路秋荷采纳,获得10
3秒前
ZhaoW完成签到,获得积分10
3秒前
随机完成签到,获得积分10
3秒前
曹梓轩发布了新的文献求助10
3秒前
清新的宛丝完成签到,获得积分10
3秒前
AUGKING27完成签到 ,获得积分10
5秒前
5秒前
詹慧子完成签到,获得积分20
5秒前
河边草发布了新的文献求助10
5秒前
焱鑫完成签到,获得积分10
5秒前
Foalphaz发布了新的文献求助10
6秒前
魔人啾啾完成签到,获得积分10
6秒前
bbb完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
芳菲依旧应助执着谷兰采纳,获得30
9秒前
9秒前
9秒前
无敌龙傲天完成签到,获得积分10
9秒前
今后应助hfy采纳,获得10
9秒前
huayi完成签到,获得积分10
10秒前
时光完成签到,获得积分20
10秒前
烨然发布了新的文献求助20
10秒前
苏打完成签到,获得积分10
10秒前
gengsumin完成签到,获得积分10
11秒前
自然映梦发布了新的文献求助10
11秒前
詹慧子发布了新的文献求助10
11秒前
zzz完成签到,获得积分10
11秒前
聪慧的白薇完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
11秒前
踢踢踢踢踢死你完成签到,获得积分10
11秒前
kokjh完成签到,获得积分20
11秒前
斯文曼凡发布了新的文献求助10
12秒前
朝菌完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586