Using Artificial Intelligence With Natural Language Processing to Combine Electronic Health Record’s Structured and Free Text Data to Identify Nonvalvular Atrial Fibrillation to Decrease Strokes and Death: Evaluation and Case-Control Study

医学 心房颤动 冲程(发动机) 自然史 心力衰竭 糖尿病 诊断代码 电子健康档案 内科学 人口 急诊医学 重症监护医学 医疗保健 经济 内分泌学 工程类 环境卫生 机械工程 经济增长
作者
Peter L. Elkin,Sarah Mullin,Jack Mardekian,Christopher Crowner,Sylvester Sakilay,Shyamashree Sinha,Gary Brady,Marcia Wright,Kimberly Nolen,JoAnn Trainer,Ross Koppel,Daniel Schlegel,Sashank Kaushik,Jane Zhao,Buer Song,Edwin Anand
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (11): e28946-e28946 被引量:25
标识
DOI:10.2196/28946
摘要

Nonvalvular atrial fibrillation (NVAF) affects almost 6 million Americans and is a major contributor to stroke but is significantly undiagnosed and undertreated despite explicit guidelines for oral anticoagulation.The aim of this study is to investigate whether the use of semisupervised natural language processing (NLP) of electronic health record's (EHR) free-text information combined with structured EHR data improves NVAF discovery and treatment and perhaps offers a method to prevent thousands of deaths and save billions of dollars.We abstracted 96,681 participants from the University of Buffalo faculty practice's EHR. NLP was used to index the notes and compare the ability to identify NVAF, congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke or transient ischemic attack, vascular disease, age 65 to 74 years, sex category (CHA2DS2-VASc), and Hypertension, Abnormal liver/renal function, Stroke history, Bleeding history or predisposition, Labile INR, Elderly, Drug/alcohol usage (HAS-BLED) scores using unstructured data (International Classification of Diseases codes) versus structured and unstructured data from clinical notes. In addition, we analyzed data from 63,296,120 participants in the Optum and Truven databases to determine the NVAF frequency, rates of CHA2DS2‑VASc ≥2, and no contraindications to oral anticoagulants, rates of stroke and death in the untreated population, and first year's costs after stroke.The structured-plus-unstructured method would have identified 3,976,056 additional true NVAF cases (P<.001) and improved sensitivity for CHA2DS2-VASc and HAS-BLED scores compared with the structured data alone (P=.002 and P<.001, respectively), causing a 32.1% improvement. For the United States, this method would prevent an estimated 176,537 strokes, save 10,575 lives, and save >US $13.5 billion.Artificial intelligence-informed bio-surveillance combining NLP of free-text information with structured EHR data improves data completeness, prevents thousands of strokes, and saves lives and funds. This method is applicable to many disorders with profound public health consequences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小东子发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
nianshu完成签到 ,获得积分0
2秒前
3秒前
cugu发布了新的文献求助10
4秒前
一诺相许完成签到 ,获得积分10
4秒前
4秒前
4秒前
共享精神应助zhuangchen采纳,获得10
5秒前
ivy发布了新的文献求助10
5秒前
充电宝应助tcmj采纳,获得10
5秒前
Owen应助冲浪男孩226采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
执着乐双发布了新的文献求助10
8秒前
8秒前
8秒前
星落枝头发布了新的文献求助10
9秒前
大方绿蕊发布了新的文献求助10
9秒前
执念发布了新的文献求助10
9秒前
大个应助RK_404采纳,获得10
10秒前
10秒前
科研通AI2S应助罗媛采纳,获得10
11秒前
柠栀发布了新的文献求助10
12秒前
12秒前
tcmj发布了新的文献求助10
13秒前
w1b发布了新的文献求助10
14秒前
小马甲应助Oliver采纳,获得10
15秒前
田様应助大方绿蕊采纳,获得10
15秒前
李健的粉丝团团长应助000采纳,获得10
15秒前
ree发布了新的文献求助20
15秒前
量子星尘发布了新的文献求助10
17秒前
ZXD1989完成签到 ,获得积分10
17秒前
samifranco发布了新的文献求助10
17秒前
zz完成签到,获得积分10
19秒前
llll完成签到 ,获得积分0
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685