Using Artificial Intelligence With Natural Language Processing to Combine Electronic Health Record’s Structured and Free Text Data to Identify Nonvalvular Atrial Fibrillation to Decrease Strokes and Death: Evaluation and Case-Control Study

医学 心房颤动 冲程(发动机) 自然史 心力衰竭 糖尿病 诊断代码 电子健康档案 内科学 人口 急诊医学 重症监护医学 医疗保健 经济 内分泌学 工程类 环境卫生 机械工程 经济增长
作者
Peter L. Elkin,Sarah Mullin,Jack Mardekian,Christopher Crowner,Sylvester Sakilay,Shyamashree Sinha,Gary Brady,Marcia Wright,Kimberly Nolen,JoAnn Trainer,Ross Koppel,Daniel Schlegel,Sashank Kaushik,Jane Zhao,Buer Song,Edwin Anand
出处
期刊:Journal of Medical Internet Research 卷期号:23 (11): e28946-e28946 被引量:25
标识
DOI:10.2196/28946
摘要

Nonvalvular atrial fibrillation (NVAF) affects almost 6 million Americans and is a major contributor to stroke but is significantly undiagnosed and undertreated despite explicit guidelines for oral anticoagulation.The aim of this study is to investigate whether the use of semisupervised natural language processing (NLP) of electronic health record's (EHR) free-text information combined with structured EHR data improves NVAF discovery and treatment and perhaps offers a method to prevent thousands of deaths and save billions of dollars.We abstracted 96,681 participants from the University of Buffalo faculty practice's EHR. NLP was used to index the notes and compare the ability to identify NVAF, congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke or transient ischemic attack, vascular disease, age 65 to 74 years, sex category (CHA2DS2-VASc), and Hypertension, Abnormal liver/renal function, Stroke history, Bleeding history or predisposition, Labile INR, Elderly, Drug/alcohol usage (HAS-BLED) scores using unstructured data (International Classification of Diseases codes) versus structured and unstructured data from clinical notes. In addition, we analyzed data from 63,296,120 participants in the Optum and Truven databases to determine the NVAF frequency, rates of CHA2DS2‑VASc ≥2, and no contraindications to oral anticoagulants, rates of stroke and death in the untreated population, and first year's costs after stroke.The structured-plus-unstructured method would have identified 3,976,056 additional true NVAF cases (P<.001) and improved sensitivity for CHA2DS2-VASc and HAS-BLED scores compared with the structured data alone (P=.002 and P<.001, respectively), causing a 32.1% improvement. For the United States, this method would prevent an estimated 176,537 strokes, save 10,575 lives, and save >US $13.5 billion.Artificial intelligence-informed bio-surveillance combining NLP of free-text information with structured EHR data improves data completeness, prevents thousands of strokes, and saves lives and funds. This method is applicable to many disorders with profound public health consequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maths发布了新的文献求助10
刚刚
Lan发布了新的文献求助10
1秒前
1秒前
星辰大海应助都是采纳,获得10
1秒前
酷波er应助都是采纳,获得10
1秒前
烟花应助都是采纳,获得10
1秒前
Hello应助都是采纳,获得10
1秒前
dnn应助都是采纳,获得10
1秒前
互助遵法尚德应助都是采纳,获得10
1秒前
希望天下0贩的0应助都是采纳,获得10
1秒前
周健关注了科研通微信公众号
2秒前
3秒前
骏辉完成签到 ,获得积分10
5秒前
lewis发布了新的文献求助10
5秒前
tao_blue完成签到,获得积分10
5秒前
夏雨的天发布了新的文献求助10
6秒前
老塔完成签到,获得积分10
6秒前
xu完成签到 ,获得积分10
7秒前
温暖砖头发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
勤劳弘文完成签到,获得积分10
10秒前
10秒前
爆螺钉完成签到,获得积分10
10秒前
tommyliu完成签到,获得积分10
12秒前
XC发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
Jes发布了新的文献求助10
13秒前
wuhaixia完成签到,获得积分10
13秒前
CNS发布了新的文献求助10
13秒前
13秒前
orixero应助子心采纳,获得10
14秒前
华仔应助健壮的笑阳采纳,获得10
14秒前
周健发布了新的文献求助150
17秒前
可靠的书桃应助ddffgz采纳,获得10
18秒前
19秒前
可爱的函函应助ExcitedFrog采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123018
求助须知:如何正确求助?哪些是违规求助? 2773507
关于积分的说明 7718023
捐赠科研通 2429087
什么是DOI,文献DOI怎么找? 1290140
科研通“疑难数据库(出版商)”最低求助积分说明 621713
版权声明 600220