Prediction of porous media fluid flow using physics informed neural networks

外推法 人工神经网络 多孔介质 流量(数学) 计算机科学 物理定律 动量(技术分析) 人工智能 应用数学 算法 物理 数学 机械 多孔性 数学分析 材料科学 量子力学 复合材料 经济 财务
作者
Muhammad M. Almajid,Moataz O. Abu-Al-Saud
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:208: 109205-109205 被引量:197
标识
DOI:10.1016/j.petrol.2021.109205
摘要

Due to the explosion of the digital age of data, deep learning applications for different physical sciences have gained momentum. In this paper, we implement a physics informed neural network (PINN) technique that incorporates information from the fluid flow physics as well as observed data to model the Buckley-Leverett problem. The classical problem of drainage of gas into a water-filled porous medium is used to validate our implementation. Several cases are tested that signify the importance of the coupling between observed data and physics-informed neural networks for different parameter space. Our results indicate that PINNs are capable of capturing the overall trend of the solution even without observed data but the resolution and accuracy of the solution are improved tremendously with observed data. Adding a small amount of diffusion to the PDE-constrained loss function improved the solution slightly only when observed data were used. Moreover, the PINN is used to solve the inverse problem and infer the most optimal multiphase flow parameters. The performance of the PINN is compared to that of an artificial neural network (ANN) without any physics. We show that the ANN performs comparably well to the PINN when the observed data used to train the ANN include times that span the early- and late-time behavior. As opposed to the PINN, the ANN is not able to predict the solution when only early-time saturation profiles are provided as observed data and extrapolation are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助等月闲采纳,获得10
1秒前
1秒前
1秒前
JamesPei应助悦耳笑晴采纳,获得10
1秒前
鱼乐乐发布了新的文献求助10
2秒前
wyq发布了新的文献求助10
2秒前
SciGPT应助thinkpeach采纳,获得10
3秒前
mdq完成签到,获得积分10
4秒前
无名花生完成签到 ,获得积分0
5秒前
MADAO发布了新的文献求助200
5秒前
King完成签到,获得积分10
5秒前
脑洞疼应助鱼乐乐采纳,获得10
7秒前
7秒前
半夏黄良发布了新的文献求助10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
张绍伟发布了新的文献求助30
9秒前
核桃应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
常弦完成签到,获得积分10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
9秒前
核桃应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
10秒前
FashionBoy应助小李同学采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
深情安青应助wuyu采纳,获得50
12秒前
wlscj应助更好的我采纳,获得20
12秒前
Mira发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406987
求助须知:如何正确求助?哪些是违规求助? 4524670
关于积分的说明 14099651
捐赠科研通 4438500
什么是DOI,文献DOI怎么找? 2436317
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406372