Prediction of porous media fluid flow using physics informed neural networks

外推法 人工神经网络 多孔介质 流量(数学) 计算机科学 物理定律 动量(技术分析) 人工智能 应用数学 算法 物理 数学 机械 多孔性 数学分析 材料科学 量子力学 经济 复合材料 财务
作者
Muhammad M. Almajid,Moataz O. Abu-Al-Saud
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:208: 109205-109205 被引量:155
标识
DOI:10.1016/j.petrol.2021.109205
摘要

Due to the explosion of the digital age of data, deep learning applications for different physical sciences have gained momentum. In this paper, we implement a physics informed neural network (PINN) technique that incorporates information from the fluid flow physics as well as observed data to model the Buckley-Leverett problem. The classical problem of drainage of gas into a water-filled porous medium is used to validate our implementation. Several cases are tested that signify the importance of the coupling between observed data and physics-informed neural networks for different parameter space. Our results indicate that PINNs are capable of capturing the overall trend of the solution even without observed data but the resolution and accuracy of the solution are improved tremendously with observed data. Adding a small amount of diffusion to the PDE-constrained loss function improved the solution slightly only when observed data were used. Moreover, the PINN is used to solve the inverse problem and infer the most optimal multiphase flow parameters. The performance of the PINN is compared to that of an artificial neural network (ANN) without any physics. We show that the ANN performs comparably well to the PINN when the observed data used to train the ANN include times that span the early- and late-time behavior. As opposed to the PINN, the ANN is not able to predict the solution when only early-time saturation profiles are provided as observed data and extrapolation are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈完成签到,获得积分10
刚刚
哇哦完成签到,获得积分10
1秒前
美满棉花糖完成签到,获得积分10
1秒前
rich应助善良身影采纳,获得10
1秒前
1秒前
2秒前
之乡坞完成签到,获得积分10
2秒前
雾里看花水中望月完成签到,获得积分10
2秒前
咕噜咕噜完成签到,获得积分20
2秒前
xiaozhang完成签到,获得积分10
3秒前
3秒前
i3utter发布了新的文献求助10
3秒前
飞云发布了新的文献求助10
3秒前
cheng4046完成签到,获得积分10
4秒前
4秒前
xiaokk发布了新的文献求助10
4秒前
4秒前
潘2333发布了新的文献求助30
4秒前
ppboyindream发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
段仁杰完成签到,获得积分10
7秒前
Anderson123完成签到,获得积分10
7秒前
ZHOUCHENG完成签到,获得积分0
7秒前
Anderson732完成签到,获得积分10
8秒前
东皇太憨完成签到,获得积分10
8秒前
9秒前
winnie完成签到,获得积分10
9秒前
9秒前
9秒前
wddddd完成签到,获得积分10
9秒前
G秋发布了新的文献求助10
9秒前
善学以致用应助糖醋可乐采纳,获得10
9秒前
9秒前
sdsd发布了新的文献求助10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969335
求助须知:如何正确求助?哪些是违规求助? 3514162
关于积分的说明 11172430
捐赠科研通 3249456
什么是DOI,文献DOI怎么找? 1794853
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804809