Prediction of porous media fluid flow using physics informed neural networks

外推法 人工神经网络 多孔介质 流量(数学) 计算机科学 物理定律 动量(技术分析) 人工智能 应用数学 算法 物理 数学 机械 多孔性 数学分析 材料科学 量子力学 复合材料 经济 财务
作者
Muhammad M. Almajid,Moataz O. Abu-Al-Saud
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:208: 109205-109205 被引量:197
标识
DOI:10.1016/j.petrol.2021.109205
摘要

Due to the explosion of the digital age of data, deep learning applications for different physical sciences have gained momentum. In this paper, we implement a physics informed neural network (PINN) technique that incorporates information from the fluid flow physics as well as observed data to model the Buckley-Leverett problem. The classical problem of drainage of gas into a water-filled porous medium is used to validate our implementation. Several cases are tested that signify the importance of the coupling between observed data and physics-informed neural networks for different parameter space. Our results indicate that PINNs are capable of capturing the overall trend of the solution even without observed data but the resolution and accuracy of the solution are improved tremendously with observed data. Adding a small amount of diffusion to the PDE-constrained loss function improved the solution slightly only when observed data were used. Moreover, the PINN is used to solve the inverse problem and infer the most optimal multiphase flow parameters. The performance of the PINN is compared to that of an artificial neural network (ANN) without any physics. We show that the ANN performs comparably well to the PINN when the observed data used to train the ANN include times that span the early- and late-time behavior. As opposed to the PINN, the ANN is not able to predict the solution when only early-time saturation profiles are provided as observed data and extrapolation are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小包完成签到,获得积分10
刚刚
刚刚
哇哇哇完成签到 ,获得积分10
刚刚
寒冷茈完成签到,获得积分20
刚刚
WW完成签到,获得积分10
1秒前
满锅发布了新的文献求助10
1秒前
1秒前
阳阳语晗完成签到,获得积分10
1秒前
留胡子的书白完成签到,获得积分10
1秒前
1秒前
LX发布了新的文献求助10
2秒前
2秒前
3秒前
junyang完成签到,获得积分10
3秒前
tian发布了新的文献求助10
3秒前
Lily完成签到,获得积分10
3秒前
LHS应助熊风采纳,获得10
4秒前
for_abSCI完成签到,获得积分0
4秒前
4秒前
桑灿垚完成签到 ,获得积分10
4秒前
4秒前
夕荀发布了新的文献求助10
4秒前
于鹏完成签到,获得积分10
4秒前
英勇星月完成签到 ,获得积分10
5秒前
李墩墩完成签到,获得积分20
5秒前
xiaoleeyu完成签到,获得积分10
5秒前
5秒前
Clarkli关注了科研通微信公众号
6秒前
霅霅完成签到,获得积分10
6秒前
吊袜带完成签到,获得积分10
6秒前
公冶菲鹰完成签到,获得积分10
7秒前
7秒前
qiuxiali123完成签到,获得积分10
7秒前
英俊的铭应助su采纳,获得10
8秒前
8秒前
wwsss完成签到,获得积分10
8秒前
Melody完成签到,获得积分10
8秒前
Ava应助奋斗夏烟采纳,获得10
8秒前
8秒前
秦艽完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005