Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning

深度学习 败血症 人工智能 重症监护医学 医学 计算机科学 内科学
作者
Michael Moor,Nicolas Bennett,Drago Plečko,Max Horn,Bastian Rieck,Nicolai Meinshausen,Peter Bühlmann,Karsten Borgwardt
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2107.05230
摘要

Despite decades of clinical research, sepsis remains a global public health crisis with high mortality, and morbidity. Currently, when sepsis is detected and the underlying pathogen is identified, organ damage may have already progressed to irreversible stages. Effective sepsis management is therefore highly time-sensitive. By systematically analysing trends in the plethora of clinical data available in the intensive care unit (ICU), an early prediction of sepsis could lead to earlier pathogen identification, resistance testing, and effective antibiotic and supportive treatment, and thereby become a life-saving measure. Here, we developed and validated a machine learning (ML) system for the prediction of sepsis in the ICU. Our analysis represents the largest multi-national, multi-centre in-ICU study for sepsis prediction using ML to date. Our dataset contains $156,309$ unique ICU admissions, which represent a refined and harmonised subset of five large ICU databases originating from three countries. Using the international consensus definition Sepsis-3, we derived hourly-resolved sepsis label annotations, amounting to $26,734$ ($17.1\%$) septic stays. We compared our approach, a deep self-attention model, to several clinical baselines as well as ML baselines and performed an extensive internal and external validation within and across databases. On average, our model was able to predict sepsis with an AUROC of $0.847 \pm 0.050$ (internal out-of sample validation) and $0.761 \pm 0.052$ (external validation). For a harmonised prevalence of $17\%$, at $80\%$ recall our model detects septic patients with $39\%$ precision 3.7 hours in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Licyan完成签到,获得积分10
刚刚
小猴子发布了新的文献求助10
刚刚
deer完成签到,获得积分10
1秒前
hxb发布了新的文献求助10
1秒前
Katherine给Katherine的求助进行了留言
1秒前
2秒前
兔斯基完成签到,获得积分10
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
心随风飞应助科研通管家采纳,获得20
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
白水完成签到,获得积分10
4秒前
许杰亮发布了新的文献求助10
5秒前
6秒前
wh雨完成签到,获得积分20
11秒前
yumi发布了新的文献求助10
12秒前
15秒前
独特斩完成签到,获得积分10
17秒前
Diana发布了新的文献求助10
19秒前
20秒前
hxb发布了新的文献求助10
22秒前
鲁滨逊发布了新的文献求助10
25秒前
25秒前
27秒前
芽芽豆完成签到 ,获得积分10
31秒前
32秒前
俗人发布了新的文献求助10
32秒前
温柔的蛋挞完成签到,获得积分20
32秒前
zcj完成签到,获得积分10
37秒前
41秒前
hahhaha完成签到,获得积分10
42秒前
44秒前
45秒前
小李完成签到,获得积分10
46秒前
hahhaha发布了新的文献求助10
52秒前
任博文完成签到 ,获得积分10
53秒前
汉堡包应助123采纳,获得10
54秒前
bkagyin应助郝宝真采纳,获得10
55秒前
爆米花应助小猴子采纳,获得10
56秒前
sally完成签到 ,获得积分10
56秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187