Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning

深度学习 败血症 人工智能 重症监护医学 医学 计算机科学 内科学
作者
Michael Moor,Nicolas Bennett,Drago Plečko,Max Horn,Bastian Rieck,Nicolai Meinshausen,Peter Bühlmann,Karsten Borgwardt
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2107.05230
摘要

Despite decades of clinical research, sepsis remains a global public health crisis with high mortality, and morbidity. Currently, when sepsis is detected and the underlying pathogen is identified, organ damage may have already progressed to irreversible stages. Effective sepsis management is therefore highly time-sensitive. By systematically analysing trends in the plethora of clinical data available in the intensive care unit (ICU), an early prediction of sepsis could lead to earlier pathogen identification, resistance testing, and effective antibiotic and supportive treatment, and thereby become a life-saving measure. Here, we developed and validated a machine learning (ML) system for the prediction of sepsis in the ICU. Our analysis represents the largest multi-national, multi-centre in-ICU study for sepsis prediction using ML to date. Our dataset contains $156,309$ unique ICU admissions, which represent a refined and harmonised subset of five large ICU databases originating from three countries. Using the international consensus definition Sepsis-3, we derived hourly-resolved sepsis label annotations, amounting to $26,734$ ($17.1\%$) septic stays. We compared our approach, a deep self-attention model, to several clinical baselines as well as ML baselines and performed an extensive internal and external validation within and across databases. On average, our model was able to predict sepsis with an AUROC of $0.847 \pm 0.050$ (internal out-of sample validation) and $0.761 \pm 0.052$ (external validation). For a harmonised prevalence of $17\%$, at $80\%$ recall our model detects septic patients with $39\%$ precision 3.7 hours in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理致远发布了新的文献求助10
刚刚
洛城完成签到,获得积分10
刚刚
阿欣完成签到,获得积分10
1秒前
bofu发布了新的文献求助10
2秒前
小李发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
飒飒完成签到,获得积分10
4秒前
4秒前
4秒前
自信眼睛完成签到 ,获得积分10
5秒前
7秒前
Davy_Y发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
快乐的寄容完成签到,获得积分10
8秒前
成就铸海完成签到,获得积分10
8秒前
伶俐灵发布了新的文献求助10
8秒前
9秒前
脑洞疼应助牛牛眉目采纳,获得10
9秒前
bofu发布了新的文献求助80
9秒前
小锋完成签到 ,获得积分10
10秒前
Elsa完成签到,获得积分10
10秒前
10秒前
cindy发布了新的文献求助10
10秒前
IvanMcRae应助张萌采纳,获得10
10秒前
Davy_Y完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
快乐的小天鹅完成签到,获得积分10
12秒前
Jason发布了新的文献求助10
12秒前
13秒前
万能图书馆应助小李采纳,获得10
15秒前
bofu发布了新的文献求助10
16秒前
小张完成签到,获得积分10
17秒前
柯一一应助淡淡夕阳采纳,获得10
17秒前
17秒前
CHL5722发布了新的文献求助20
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105