基因敲除
医学
细胞凋亡
流式细胞术
基因沉默
免疫印迹
氧化应激
分子生物学
下调和上调
炎症
HMGB1
癌症研究
内分泌学
化学
纤维化
小RNA
内科学
生物
免疫学
基因
生物化学
作者
Jing Wang,Shifeng Yang,Wendong Li,Ming Zhao,Kai Li
摘要
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes. Recently, many circular RNAs can exert crucial roles in DN progression. This study intended to explore the role and mechanism of circ_0000491 in DN.The DN mouse model was constructed by streptozotocin injection, and the DN cell model was established using high glucose (HG) treatment in mouse mesangial cells (SV40-MES13). The expression of circ_0000491 and microRNA-455-3p (miR-455-3p) was detected by quantitative real-time polymerase chain reaction. Cell apoptosis was evaluated by flow cytometry. The expression levels of high-mobility group box 1 (Hmgb1) protein, apoptosis-related proteins, and fibrosis-related proteins were examined by the Western blot assay. The release of inflammatory cytokines was assessed by enzyme-linked immunosorbent assay. The oxidative stress factors were analyzed by corresponding kits. The predicted interaction between miR-455-3p and circ_0000491 or Hmgb1 was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay.Circ_0000491 was overexpressed in the DN mouse model and HG-induced SV40-MES13 cells. Knockdown of circ_0000491 weakened HG-induced apoptosis, inflammation, oxidative stress, and fibrosis in SV40-MES13 cells. miR-455-3p was a direct target of circ_0000491, and miR-455-3p inhibition could reverse the role of circ_0000491 silencing in HG-induced SV40-MES13 cells. Moreover, Hmgb1 was a target gene of miR-455-3p, and miR-455-3p played a protective role against HG-induced cell injury by targeting Hmgb1. In addition, circ_0000491 regulated Hmgb1 expression by sponging miR-455-3p.Circ_0000491 knockdown inhibited HG-induced apoptosis, inflammation, oxidative stress, and fibrosis in SV40-MES13 cells by regulating miR-455-3p/Hmgb1 axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI