Optimisation of takeaway delivery routes considering the mutual satisfactions of merchants and customers

渡线 车辆路径问题 遗传算法 启发式 布线(电子设计自动化) 业务 计算机科学 服务(商务) 数学优化 运筹学 工程类 数学 营销 人工智能 计算机网络
作者
Teng Ren,Hongbo Xu,Jin Kang-ning,Tianyu Luo,Ling Wang,Lining Xing
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:162: 107728-107728 被引量:25
标识
DOI:10.1016/j.cie.2021.107728
摘要

• A vehicle routing optimization model considering dual satisfaction is established. • An improved GA with forward continuous crossover and differential mutation is given. • A case study is conducted to compare the improved GA with the two algorithms. To solve a series of problems (including high cost and delivery delay) during takeaway delivery, a model for the vehicle routing problem (VRP) during goods pickup and delivery is developed by considering constraints such as the capacity of delivery vehicles, delivery mileage and time window. The model is constructed by transforming the satisfactions of merchants and customers into a penalty function and aiming to minimise the total delivery cost. As for the drawbacks in a conventional genetic algorithm (CGA), such as a low convergence rate and locally optimum solutions, an improved GA (IGA) is designed by separately using the insertion heuristic algorithm to construct initial solutions and introducing the forward continuous crossover and differential mutation strategies. On the one hand, the numerical analysis and test of weights indicate that the model can reduce the delivery cost of enterprises offering takeaway service and improve satisfactions of merchants and customers. It verifies that reasonably considering satisfactions of merchants and customers during vehicle routing is conducive to cost-reduction and increased efficiency of enterprises. On the other hand, a simulation is conducted to compare and analyse various algorithms based on two different scales of test examples, which validates the proposed algorithm as effective. The study provides a theoretical basis and decision reference for enterprises offering takeaway service to improve delivery efficiency and competitiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123123完成签到,获得积分10
刚刚
1秒前
zhijianzhe完成签到,获得积分20
1秒前
熊二完成签到,获得积分10
1秒前
1秒前
Ana完成签到,获得积分10
1秒前
1秒前
wangjunhao发布了新的文献求助10
1秒前
丘比特应助怡然的代玉采纳,获得10
1秒前
充电宝应助fusheng采纳,获得10
2秒前
Chao123_完成签到,获得积分10
2秒前
3秒前
HP完成签到,获得积分10
3秒前
车轮滚滚完成签到,获得积分10
3秒前
4秒前
东邪西毒加任我行完成签到,获得积分10
5秒前
5秒前
Chao123_发布了新的文献求助10
6秒前
虹虹完成签到,获得积分10
6秒前
bettersy完成签到,获得积分10
6秒前
Rondab应助车轮滚滚采纳,获得10
6秒前
小陆发布了新的文献求助10
6秒前
6秒前
Lucas应助大松鼠采纳,获得20
6秒前
6秒前
兴奋赛君发布了新的文献求助10
7秒前
开心超人发布了新的文献求助10
8秒前
汉堡包应助linmo采纳,获得10
8秒前
8秒前
9秒前
Rubby应助虹虹采纳,获得10
11秒前
外向烤鸡发布了新的文献求助10
11秒前
cc完成签到,获得积分10
11秒前
星辰大海应助blawxx采纳,获得10
12秒前
能干的向真应助TresAU采纳,获得10
12秒前
邓佳鑫Alan应助阿圆采纳,获得10
12秒前
张同学要谦虚完成签到,获得积分10
12秒前
13秒前
13秒前
fusheng发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288