Cancer survival prognosis with Deep Bayesian Perturbation Cox Network

计算机科学 比例危险模型 人工神经网络 人工智能 贝叶斯概率 机器学习 数据挖掘 贝叶斯网络 统计 数学
作者
Zhongyue Zhang,Hua Chai,Yi Wang,Zixiang Pan,Yuedong Yang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:141: 105012-105012 被引量:17
标识
DOI:10.1016/j.compbiomed.2021.105012
摘要

The Cox proportional hazards model with neural networks is widely used to accurately predict survival outcome for choosing cancer treatment strategies. Although this method has shown outstanding performance in many tasks, it has encountered challenges when dealing with high-dimensional datasets. In this study, we point out that the Cox network has estimation bias in processing such datasets with a large number of censored samples. The estimation bias is composed of censored estimation bias and variance estimation bias, which limit the prediction performance of the model. In order to correct this bias, this paper proposes the Deep Bayesian Perturbation Cox Network (DBP), which introduces Bayesian prior knowledge about censored samples to optimize the training process of the neural network. Specifically, the model uses a sampling module called Bayesian Perturbation to approximate the prior knowledge, which can be used as a component for other Cox-based neural networks.The comparison between DBP and the previous model in different kinds of genomic datasets demonstrates that our model has made significant improvements over previous state-of-the-art methods. In addition, the simulation experiments are performed to illustrate how the DBP method addresses the bias caused by Cox Network. In the case study, based on the predicted risks in BRCA data from TCGA, we identify 400 differential expressed genes and 20 KEGG pathways that are associated with breast cancer prognosis, among which 65% of the top 20 genes have been proved by literature review.Overall, these results demonstrate that our proposed method is advanced and robust in datasets with a large proportion of censored samples. Besides, it can guide to discover disease-related genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助WHY采纳,获得10
2秒前
Mr_X完成签到,获得积分20
2秒前
2秒前
3秒前
5秒前
5秒前
无人深空完成签到,获得积分10
5秒前
酷波er应助cc哈库纳玛塔塔采纳,获得10
6秒前
6秒前
佛山婆婆发布了新的文献求助10
9秒前
王云豆完成签到,获得积分20
10秒前
10秒前
goinggo发布了新的文献求助10
10秒前
戴戴发布了新的文献求助10
11秒前
李健的小迷弟应助哈哈采纳,获得10
11秒前
hxxxxx关注了科研通微信公众号
11秒前
多喝热水发布了新的文献求助10
11秒前
王云豆发布了新的文献求助30
13秒前
susanchen完成签到,获得积分10
14秒前
14秒前
14秒前
无聊的怀绿完成签到,获得积分10
15秒前
15秒前
ohyeah8888应助韶华采纳,获得10
15秒前
aliu发布了新的文献求助10
15秒前
unxx发布了新的文献求助10
17秒前
传奇3应助wei采纳,获得10
18秒前
华仔应助戴戴采纳,获得10
18秒前
脑洞疼应助goinggo采纳,获得10
18秒前
susanchen发布了新的文献求助10
19秒前
20秒前
21秒前
ZHANG完成签到,获得积分10
21秒前
李梦完成签到,获得积分10
21秒前
pianoboy发布了新的文献求助10
22秒前
JamesPei应助hanchangcun采纳,获得10
23秒前
冷酷的灵安完成签到,获得积分10
23秒前
陆中硕完成签到,获得积分10
25秒前
完美世界应助端月十八采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748491
求助须知:如何正确求助?哪些是违规求助? 3291508
关于积分的说明 10073402
捐赠科研通 3007382
什么是DOI,文献DOI怎么找? 1651565
邀请新用户注册赠送积分活动 786479
科研通“疑难数据库(出版商)”最低求助积分说明 751752