动态力学分析
材料科学
复合材料
倒装芯片
粘弹性
玻璃化转变
等温过程
动态模量
微观结构
模数
弯曲
聚合物
图层(电子)
热力学
胶粘剂
物理
作者
Pradeep Lall,Madhu Kasturi,Haotian Wu,Jeffrey C. Suhling,Edward Davis
出处
期刊:Journal of Electronic Packaging
[ASME International]
日期:2021-10-12
被引量:6
摘要
Abstract Automotive underhood electronics are subjected to high operating temperatures in the neighborhood of 150 to 200? for prolonged periods in the neighborhood of 10-years. Consumer grade off-the shelf electronics are designed to operate at 55 to 85? with a lower use-life of 3 to 5 years. Underfill materials are used to provide supplemental restraint to fine-pitch area array electronics and meet the reliability requirements. In this paper, a number of different underfill materials are subjected to automotive underhood temperatures to study the effect of long time isothermal exposure on microstructure and dynamic-mechanical properties. It has been shown that isothermal aging oxidizes the underfill, which can change the mechanical properties of the material significantly. The oxidation of underfill was studied experimentally by measuring oxidation layer thickness using polarized optical microscope. The effect on the mechanical properties was studied using the dynamic mechanical properties of underfill with DMA (Dynamic Mechanical Analyzer). Two different underfill materials were subjected to three different isothermal exposure, which are below, near and above the glass transition temperature of the underfills. The dynamic mechanical viscoelastic properties like storage modulus, loss modulus, tan delta and their respective glass transition temperatures were investigated. Three point bending mode was used in the DMA with a frequency of 1 Hz operating at 3?/min.
科研通智能强力驱动
Strongly Powered by AbleSci AI