An improved cuckoo search based extreme learning machine for medical data classification

极限学习机 计算机科学 布谷鸟搜索 人工智能 人工神经网络 机器学习 混淆矩阵 摩尔-彭罗斯伪逆 接收机工作特性 算法 模式识别(心理学) 反向 数学 几何学 粒子群优化
作者
Puspanjali Mohapatra,Sujata Chakravarty,P.K. Dash
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:24: 25-49 被引量:174
标识
DOI:10.1016/j.swevo.2015.05.003
摘要

Machine learning techniques are being increasingly used for detection and diagnosis of diseases for its accuracy and efficiency in pattern classification. In this paper, improved cuckoo search based extreme learning machine (ICSELM) is proposed to classify binary medical datasets. Extreme learning machine (ELM) is widely used as a learning algorithm for training single layer feed forward neural networks (SLFN) in the field of classification. However, to make the model more stable, an evolutionary algorithm improved cuckoo search (ICS) is used to pre-train ELM by selecting the input weights and hidden biases. Like ELM, Moore–Penrose (MP) generalized inverse is used in ICSELM to analytically determines the output weights. To evaluate the effectiveness of the proposed model, four benchmark datasets, i.e. Breast Cancer, Diabetes, Bupa and Hepatitis from the UCI Repository of Machine Learning are used. A number of useful performance evaluation measures including accuracy, sensitivity, specificity, confusion matrix, Gmean, F-score and norm of the output weights as well as the area under the receiver operating characteristic (ROC) curve are computed. The results are analyzed and compared with both ELM based models like ELM, on-line sequential extreme learning algorithm (OSELM), CSELM and other artificial neural networks i.e. multi-layered perceptron (MLP), MLPCS, MLPICS and radial basis function neural network (RBFNN), RBFNNCS, RBFNNICS. The experimental results demonstrate that the ICSELM model outperforms other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
Dada应助lkk采纳,获得30
6秒前
李健应助pinkangel采纳,获得10
6秒前
7秒前
7秒前
小党发布了新的文献求助10
8秒前
9秒前
llchen完成签到,获得积分10
9秒前
10秒前
091完成签到 ,获得积分10
12秒前
勤奋一刀发布了新的文献求助10
12秒前
圆圆发布了新的文献求助10
17秒前
xxxx完成签到,获得积分10
19秒前
19秒前
高高完成签到,获得积分10
22秒前
stuart发布了新的文献求助10
22秒前
LaTeXer应助城市猎人采纳,获得100
24秒前
wjn完成签到,获得积分10
25秒前
炎炎夏无声完成签到 ,获得积分10
26秒前
缥缈的冰旋完成签到,获得积分10
26秒前
Ann完成签到,获得积分10
27秒前
善良的冷梅完成签到,获得积分10
27秒前
30秒前
30秒前
hou发布了新的文献求助10
31秒前
Dr.Joseph完成签到,获得积分10
32秒前
李虎完成签到 ,获得积分10
32秒前
manfullmoon完成签到,获得积分10
32秒前
zhentg完成签到,获得积分0
33秒前
今后应助科研通管家采纳,获得10
34秒前
汉堡包应助科研通管家采纳,获得10
34秒前
晓湫发布了新的文献求助20
34秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
田様应助科研通管家采纳,获得10
34秒前
量子星尘发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547