Machine learning risk score for prediction of gestational diabetes in early pregnancy in Tianjin, China

妊娠期糖尿病 医学 逻辑回归 接收机工作特性 机器学习 怀孕 体质指数 试验装置 人口 弗雷明翰风险评分 人工智能 产科 统计 计算机科学 妊娠期 内科学 数学 环境卫生 生物 遗传学 疾病
作者
Hongwei Liu,Jing Li,Junhong Leng,Hui Wang,Jinnan Liu,Weiqin Li,Hongyan Liu,Shuo Wang,Jun Ma,Juliana C.N. Chan,Zhijie Yu,Gang Hu,Changping Li,Xilin Yang
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:37 (5) 被引量:50
标识
DOI:10.1002/dmrr.3397
摘要

Abstract Aims This study aimed to develop a machine learning–based prediction model for gestational diabetes mellitus (GDM) in early pregnancy in Chinese women. Materials and methods We used an established population‐based prospective cohort of 19,331 pregnant women registered as pregnant before the 15th gestational week in Tianjin, China, from October 2010 to August 2012. The dataset was randomly divided into a training set (70%) and a test set (30%). Risk factors collected at registration were examined and used to construct the prediction model in the training dataset. Machine learning, that is, the extreme gradient boosting (XGBoost) method, was employed to develop the model, while a traditional logistic model was also developed for comparison purposes. In the test dataset, the performance of the developed prediction model was assessed by calibration plots for calibration and area under the receiver operating characteristic curve (AUR) for discrimination. Results In total, 1484 (7.6%) women developed GDM. Pre‐pregnancy body mass index, maternal age, fasting plasma glucose at registration, and alanine aminotransferase were selected as risk factors. The machine learning XGBoost model‐predicted probability of GDM was similar to the observed probability in the test data set, while the logistic model tended to overestimate the risk at the highest risk level (Hosmer–Lemeshow test p value: 0.243 vs. 0.099). The XGBoost model achieved a higher AUR than the logistic model (0.742 vs. 0.663, p < 0.001). This XGBoost model was deployed through a free, publicly available software interface ( https://liuhongwei.shinyapps.io/gdm_risk_calculator/ ). Conclusion The XGBoost model achieved better performance than the logistic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
bc夹心给bc夹心的求助进行了留言
2秒前
情怀应助GYPP采纳,获得10
2秒前
3秒前
zzzzzzzzzl发布了新的文献求助10
7秒前
李健的小迷弟应助狄念梦采纳,获得10
7秒前
Yifan2024应助科研通管家采纳,获得30
9秒前
大额发布了新的文献求助10
10秒前
syiimo完成签到 ,获得积分10
11秒前
文静的人雄完成签到,获得积分20
12秒前
Eva发布了新的文献求助10
15秒前
16秒前
16秒前
33发布了新的文献求助10
17秒前
怕黑半仙完成签到,获得积分10
18秒前
充电宝应助赵卫星采纳,获得10
18秒前
wanci应助大琪采纳,获得10
19秒前
1245发布了新的文献求助10
19秒前
19秒前
孤独黑猫完成签到 ,获得积分10
20秒前
chen发布了新的文献求助10
21秒前
lbh完成签到,获得积分10
21秒前
小马发布了新的文献求助10
21秒前
完美世界应助深情的安柏采纳,获得10
22秒前
23秒前
23秒前
GYPP发布了新的文献求助10
24秒前
跳跃的黑猫完成签到,获得积分10
27秒前
28秒前
Ava应助ZY采纳,获得10
28秒前
Singularity应助欢呼的世立采纳,获得20
29秒前
29秒前
叶子豪发布了新的文献求助10
29秒前
orange9发布了新的文献求助10
31秒前
结实的啤酒完成签到 ,获得积分10
32秒前
33完成签到 ,获得积分20
36秒前
挚zhi发布了新的文献求助10
40秒前
orixero应助hhan采纳,获得10
40秒前
ding应助chen采纳,获得10
40秒前
41秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387466
求助须知:如何正确求助?哪些是违规求助? 3000207
关于积分的说明 8789936
捐赠科研通 2686116
什么是DOI,文献DOI怎么找? 1471475
科研通“疑难数据库(出版商)”最低求助积分说明 680302
邀请新用户注册赠送积分活动 673072