脱氮酶
泛素
蛋白酵素
生物
RNA干扰
基因敲除
细胞生物学
酶
基因
化学
生物化学
核糖核酸
作者
Peng Yihong,Jing Guo,Tianle Sun,Yuxuan Fu,Hui Zheng,Chunsheng Dong,Sidong Xiong
出处
期刊:Journal of Immunology
[The American Association of Immunologists]
日期:2020-10-30
卷期号:205 (11): 3167-3178
被引量:21
标识
DOI:10.4049/jimmunol.1901384
摘要
Abstract Deubiquitinating enzymes (DUBs) are cysteine proteases that reverse the ubiquitination by removing ubiquitins from the target protein. The human genome encodes ∼100 potential DUBs, which can be classified into six families, influencing multiple cellular processes, such as antiviral responses, inflammatory responses, apoptosis, etc. To systematically explore the role of DUBs involved in antiviral immunity, we performed an RNA interference–based screening that contains 97 human DUBs. We identified that ubiquitin-specific protease (USP) 39 expression modulates the antiviral activity, which is, to our knowledge, a previously unknown function of this enzyme. Small interfering RNA knockdown of USP39 significantly enhanced viral replication, whereas overexpression of USP39 had an opposite effect. Mechanistically, USP39 does not affect the production of type I IFN but significantly promotes JAK/STAT downstream of type I signaling by enhancing IFN-stimulated response elements promoter activity and expression of IFN-stimulated genes. Interestingly, USP39, previously considered not to have the deubiquitinase activity, in this study is proved to interact with STAT1 and sustain its protein level by deubiqutination. Furthermore, we found that through novel mechanism USP39 can significantly decrease K6-linked but not K48-linked ubiquitination of STAT1 for degradation. Taken together, these findings uncover that USP39 is, to our knowledge, a new deubiquitinase that positively regulates IFN-induced antiviral efficacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI