Design of a Bio-Inspired Anti-Erosion Structure for a Water Hydraulic Valve Core: An Experimental Study

芯(光纤) 腐蚀 环境科学 工程类 材料科学 地质学 复合材料 地貌学
作者
Haihang Wang,Xu He,Yonghui Zhang,Siqing Chen,Zitong Zhao,Junlong Chen
出处
期刊:Biomimetics [MDPI AG]
卷期号:4 (3): 63-63 被引量:19
标识
DOI:10.3390/biomimetics4030063
摘要

Animals and plants have numerous active protections for adapting to the complex and severe living environments, providing endless inspiration for extending the service life of materials and machines. Conch, a marine animal living near the coast and chronically suffering from the erosion of sand in water, has adapted to the condition through its anti-erosion conch shell. Romanesco broccoli, a plant whose inflorescence is self-similar in character, has a natural fractal bud’s form. Coupling the convex domes on the conch shell and the fractal structure of Romanesco broccoli, a novel valve core structure of a water hydraulic valve was designed in this paper to improve the particle erosion resistance and valve core’s service life. Three models were built to compare the effect among the normal structure, bionic structure, and multi-source coupling bionic structures, and were coined using 3D printing technology. A 3D printed water hydraulic valve was manufactured to simulate the working condition of a valve core under sand erosion in water flow, and capture the experimental videos of the two-phase flow. Furthermore, based on the water hydraulic platform and one-camera-six-mirror 3D imaging subsystem, the experiment system was established and used to compare the performance of the three different valve cores. As a result, the results showed that the coupling bionic structure could effectively improve the anti-erosion property of the valve core and protect the sealing face on the valve core from wear. This paper presents a novel way of combining advantages from both animal (function bionic) and plant (shape bionic) in one component design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
OngJi完成签到 ,获得积分10
1秒前
Jasper应助123123采纳,获得10
1秒前
活力成败发布了新的文献求助10
2秒前
sunsun发布了新的文献求助10
2秒前
2秒前
苗儿完成签到,获得积分10
2秒前
wanci应助frl采纳,获得10
3秒前
白椋发布了新的文献求助10
3秒前
谨慎师完成签到 ,获得积分10
3秒前
3秒前
zhang发布了新的社区帖子
4秒前
4秒前
4秒前
4秒前
甜梨完成签到,获得积分10
4秒前
小郭发布了新的文献求助10
5秒前
紫辰完成签到 ,获得积分10
5秒前
5秒前
领导范儿应助图南采纳,获得10
5秒前
隐形曼青应助frl采纳,获得10
5秒前
wys0108发布了新的文献求助10
6秒前
6秒前
6秒前
XL发布了新的文献求助10
7秒前
今后应助frl采纳,获得10
8秒前
煎蛋发布了新的文献求助10
8秒前
8秒前
韭菜发布了新的文献求助10
8秒前
汉堡包应助zzh采纳,获得10
8秒前
欣慰的曼易完成签到,获得积分20
8秒前
calmxp发布了新的文献求助10
9秒前
mao完成签到,获得积分10
9秒前
wenjiaolin发布了新的文献求助10
9秒前
sims完成签到,获得积分10
9秒前
10秒前
sims发布了新的文献求助10
11秒前
火枪手发布了新的文献求助10
14秒前
SYLH应助舒适的秋双采纳,获得10
14秒前
完美世界应助frl采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589821
求助须知:如何正确求助?哪些是违规求助? 3158205
关于积分的说明 9519035
捐赠科研通 2861184
什么是DOI,文献DOI怎么找? 1572327
邀请新用户注册赠送积分活动 737839
科研通“疑难数据库(出版商)”最低求助积分说明 722547