Layer-Specific Strain Is Preload Dependent: Comparison between Speckle-Tracking Echocardiography and Cardiac Magnetic Resonance Feature-Tracking

特征跟踪 医学 预加载 心脏病学 斑点追踪超声心动图 内科学 拉伤 心脏磁共振 磁共振成像 心脏磁共振成像 径向应力 射血分数 核医学 血流动力学 放射科 心力衰竭 变形(气象学) 材料科学 竖琴 复合材料 物理 量子力学
作者
Frederik Fasth Grund,Charlotte Burup Kristensen,Katrine Aagaard Myhr,Niels Vejlstrup,Christian Hassager,Rasmus Møgelvang
出处
期刊:Journal of The American Society of Echocardiography [Elsevier BV]
卷期号:34 (4): 377-387 被引量:5
标识
DOI:10.1016/j.echo.2020.12.024
摘要

•STE and CMR-FT longitudinal and circumferential layer-specific strain are preload dependent. •STE and CMR-FT longitudinal strain are correlated contrary to circumferential strain. •STE and CMR-FT strain parameters display poor intermodal agreement. Background Speckle-tracking echocardiographic (STE) imaging and cardiac magnetic resonance feature-tracking (CMR-FT) are novel imaging techniques enabling layer-specific quantification of myocardial deformation. Conventional echocardiographic parameters are load dependent, but few studies have investigated the effects of loading conditions on STE and CMR-FT layer-specific strain and the interchangeability of the two modalities. The aim of this study was to evaluate the effects of acute preload augmentation by saline infusion on STE and CMR-FT longitudinal and circumferential layer-specific strain parameters and their intermodal agreement. Methods A total of 80 subjects, including 41 control subjects (mean age, 40 ± 12 years; 49% men) and 39 patients with cardiac disease (mean age, 47 ± 15 years; 92% men) were examined using STE and CMR-FT layer-specific strain analysis before and after saline infusion (median, 2.0 L) with quantification of transmural global longitudinal strain (GLS), epicardial GLS, endocardial GLS, transmural global circumferential strain (GCS), epicardial GCS, and endocardial GCS in addition to epicardial-endocardial gradients. Bland-Altman plots and Pearson correlation coefficients were used to evaluate agreement between the two modalities across all strain parameters. Results Acute saline infusion increased all STE and CMR-FT layer-specific strain parameters in both groups. STE and CMR-FT GLS increased by 1.4 ± 1.5% and 1.5 ± 2.0% (P < .001) in control subjects and by 0.9 ± 1.8% and 0.9 ± 1.9% (P < .001) in patients with cardiac disease. STE and CMR-FT GCS increased by 2.0 ± 2.2% and 1.8 ± 2.3% (P < .001) in control subjects and by 1.8 ± 2.3% and 1.7 ± 3.6% in patients with cardiac disease (P < .001 and P = .03). STE longitudinal strain correlated strongly with corresponding CMR-FT longitudinal strain (GLS, epicardial GLS, and endocardial GLS: r = 0.81, r = 0.82, and r = 0.81, respectively) despite poor intermodal agreement (bias ± limits of agreement, −2.84 ± 4.06%, 0.16 ± 3.68%, and 2.33 ± 3.52%, respectively) whereas GCS, epicardial GCS, and endocardial GCS correlated weakly between the two modalities (r = 0.28, r = 0.19, and r = 0.34, respectively) and displayed poor intermodal agreement (bias ± limits of agreement, −1.33 ± 6.86%, 4.43 ± 6.49%, and −9.92 ± 8.55%, respectively). Conclusions STE and CMR-FT longitudinal and circumferential layer-specific strain parameters are preload dependent in both control subjects and patients with cardiac disease. STE and CMR-FT longitudinal layer-specific strain parameters are strongly correlated, whereas circumferential layer-specific strain parameters are weakly correlated. STE and CMR-FT longitudinal and circumferential strain should not be used interchangeably, because of poor intermodal agreement. Speckle-tracking echocardiographic (STE) imaging and cardiac magnetic resonance feature-tracking (CMR-FT) are novel imaging techniques enabling layer-specific quantification of myocardial deformation. Conventional echocardiographic parameters are load dependent, but few studies have investigated the effects of loading conditions on STE and CMR-FT layer-specific strain and the interchangeability of the two modalities. The aim of this study was to evaluate the effects of acute preload augmentation by saline infusion on STE and CMR-FT longitudinal and circumferential layer-specific strain parameters and their intermodal agreement. A total of 80 subjects, including 41 control subjects (mean age, 40 ± 12 years; 49% men) and 39 patients with cardiac disease (mean age, 47 ± 15 years; 92% men) were examined using STE and CMR-FT layer-specific strain analysis before and after saline infusion (median, 2.0 L) with quantification of transmural global longitudinal strain (GLS), epicardial GLS, endocardial GLS, transmural global circumferential strain (GCS), epicardial GCS, and endocardial GCS in addition to epicardial-endocardial gradients. Bland-Altman plots and Pearson correlation coefficients were used to evaluate agreement between the two modalities across all strain parameters. Acute saline infusion increased all STE and CMR-FT layer-specific strain parameters in both groups. STE and CMR-FT GLS increased by 1.4 ± 1.5% and 1.5 ± 2.0% (P < .001) in control subjects and by 0.9 ± 1.8% and 0.9 ± 1.9% (P < .001) in patients with cardiac disease. STE and CMR-FT GCS increased by 2.0 ± 2.2% and 1.8 ± 2.3% (P < .001) in control subjects and by 1.8 ± 2.3% and 1.7 ± 3.6% in patients with cardiac disease (P < .001 and P = .03). STE longitudinal strain correlated strongly with corresponding CMR-FT longitudinal strain (GLS, epicardial GLS, and endocardial GLS: r = 0.81, r = 0.82, and r = 0.81, respectively) despite poor intermodal agreement (bias ± limits of agreement, −2.84 ± 4.06%, 0.16 ± 3.68%, and 2.33 ± 3.52%, respectively) whereas GCS, epicardial GCS, and endocardial GCS correlated weakly between the two modalities (r = 0.28, r = 0.19, and r = 0.34, respectively) and displayed poor intermodal agreement (bias ± limits of agreement, −1.33 ± 6.86%, 4.43 ± 6.49%, and −9.92 ± 8.55%, respectively). STE and CMR-FT longitudinal and circumferential layer-specific strain parameters are preload dependent in both control subjects and patients with cardiac disease. STE and CMR-FT longitudinal layer-specific strain parameters are strongly correlated, whereas circumferential layer-specific strain parameters are weakly correlated. STE and CMR-FT longitudinal and circumferential strain should not be used interchangeably, because of poor intermodal agreement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI5应助袁衣采纳,获得30
2秒前
小赵完成签到,获得积分10
3秒前
丁二发布了新的文献求助10
3秒前
巨人的背影完成签到,获得积分10
3秒前
萌酱完成签到,获得积分10
4秒前
蝼蚁王完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
缓慢手机完成签到,获得积分10
5秒前
内向映天完成签到 ,获得积分10
6秒前
传奇3应助WangXuerong采纳,获得10
6秒前
小吴关注了科研通微信公众号
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
silence63发布了新的文献求助10
10秒前
smujj发布了新的文献求助10
10秒前
dsdingding发布了新的文献求助10
11秒前
呆呆是一条鱼完成签到,获得积分10
11秒前
饼饼完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
你再说一遍完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
16秒前
Hello应助Sy采纳,获得10
16秒前
cloudb完成签到,获得积分10
17秒前
smujj完成签到,获得积分20
18秒前
温言叮叮铛完成签到,获得积分10
18秒前
18秒前
KristenStewart完成签到,获得积分10
19秒前
淡定可乐发布了新的文献求助10
19秒前
乐乐应助蝼蚁王采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069191
求助须知:如何正确求助?哪些是违规求助? 4290611
关于积分的说明 13368297
捐赠科研通 4110680
什么是DOI,文献DOI怎么找? 2251050
邀请新用户注册赠送积分活动 1256268
关于科研通互助平台的介绍 1188741