A practical solution based on convolutional neural network for non-intrusive load monitoring

智能电表 计算机科学 卷积神经网络 计算智能 数据挖掘 人工神经网络 能源消耗 能量(信号处理) 人工智能 实时计算 机器学习 智能电网 统计 数学 生态学 生物
作者
Arash Moradzadeh,Behnam Mohammadi‐Ivatloo,Mehdi Abapour,Amjad Anvari‐Moghaddam,Saeid Gholami Farkoush,Sang-Bong Rhee
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:12 (10): 9775-9789 被引量:50
标识
DOI:10.1007/s12652-020-02720-6
摘要

In recent years, the introduction of practical and useful solutions to solve the non-intrusive load monitoring (NILM) as one of the sub-sectors of energy management has posed many challenges. In this paper, an effective and applicable solution based on deep learning called convolutional neural network (CNN) is employed for this purpose. The proposed method with the layer-to-layer structure and extraction of features in the power consumption (PC) curves of each household appliances will be able to detect and distinguish the type of electrical appliances (EAs). Likewise, the load disaggregation for the total home PC will be based on identifying the PC patterns of each EA. To do this, experimental evaluation of reference energy data disaggregation dataset (REDD) related to real-world data and measurement at low frequency is used. The PC curves of each EA are used as input data for training and testing the network. After initial training and testing by the PC data of EAs, the total PC of building obtained from the smart meter are used as input for each network in order to load disaggregation. The trained networks prove to be able to disaggregate the total PC for REDD houses 1, 2, 3, and 4 with a 96.17% mean accuracy. The presented results show the precision and efficiency of the suggested technique for solving NILM problems compared to other used methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TL关注了科研通微信公众号
1秒前
量子星尘发布了新的文献求助10
2秒前
脑洞疼应助jy采纳,获得10
2秒前
1816013153发布了新的文献求助10
3秒前
qqdm发布了新的文献求助10
3秒前
珂珂完成签到,获得积分10
4秒前
wdy完成签到,获得积分10
5秒前
小点点cy_完成签到 ,获得积分10
6秒前
华仔应助韩钰小宝采纳,获得10
6秒前
6秒前
高健晨发布了新的文献求助10
6秒前
7秒前
koui完成签到 ,获得积分10
8秒前
今后应助刘淼采纳,获得10
8秒前
韩明佐完成签到,获得积分10
9秒前
科研通AI6应助zsl采纳,获得10
9秒前
愤怒的源智完成签到,获得积分10
10秒前
10秒前
10秒前
干羞花完成签到,获得积分0
11秒前
解冰凡完成签到,获得积分10
11秒前
11秒前
田様应助祥云采纳,获得10
11秒前
12秒前
丘比特应助青木蓝采纳,获得10
13秒前
搜集达人应助正直小蚂蚁采纳,获得10
13秒前
正己烷发布了新的文献求助10
13秒前
高序完成签到,获得积分10
13秒前
14秒前
甲乙发布了新的文献求助10
14秒前
何木完成签到 ,获得积分10
14秒前
小蘑菇应助K丶口袋采纳,获得10
15秒前
15秒前
又见三皮发布了新的文献求助10
16秒前
花Cheung完成签到,获得积分10
16秒前
aftale完成签到 ,获得积分10
16秒前
科研通AI6应助zjq4302采纳,获得10
17秒前
吴未发布了新的文献求助10
17秒前
ZZ完成签到,获得积分10
18秒前
NexusExplorer应助和谐幻桃采纳,获得10
18秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580415
求助须知:如何正确求助?哪些是违规求助? 4665209
关于积分的说明 14755310
捐赠科研通 4606804
什么是DOI,文献DOI怎么找? 2527958
邀请新用户注册赠送积分活动 1497277
关于科研通互助平台的介绍 1466331