A practical solution based on convolutional neural network for non-intrusive load monitoring

智能电表 计算机科学 卷积神经网络 计算智能 数据挖掘 人工神经网络 能源消耗 能量(信号处理) 人工智能 实时计算 机器学习 智能电网 统计 数学 生态学 生物
作者
Arash Moradzadeh,Behnam Mohammadi‐Ivatloo,Mehdi Abapour,Amjad Anvari‐Moghaddam,Saeid Gholami Farkoush,Sang-Bong Rhee
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:12 (10): 9775-9789 被引量:50
标识
DOI:10.1007/s12652-020-02720-6
摘要

In recent years, the introduction of practical and useful solutions to solve the non-intrusive load monitoring (NILM) as one of the sub-sectors of energy management has posed many challenges. In this paper, an effective and applicable solution based on deep learning called convolutional neural network (CNN) is employed for this purpose. The proposed method with the layer-to-layer structure and extraction of features in the power consumption (PC) curves of each household appliances will be able to detect and distinguish the type of electrical appliances (EAs). Likewise, the load disaggregation for the total home PC will be based on identifying the PC patterns of each EA. To do this, experimental evaluation of reference energy data disaggregation dataset (REDD) related to real-world data and measurement at low frequency is used. The PC curves of each EA are used as input data for training and testing the network. After initial training and testing by the PC data of EAs, the total PC of building obtained from the smart meter are used as input for each network in order to load disaggregation. The trained networks prove to be able to disaggregate the total PC for REDD houses 1, 2, 3, and 4 with a 96.17% mean accuracy. The presented results show the precision and efficiency of the suggested technique for solving NILM problems compared to other used methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正经大善人完成签到,获得积分10
1秒前
fx发布了新的文献求助10
1秒前
顾矜应助刻苦的丹妗采纳,获得10
2秒前
老宇完成签到,获得积分10
2秒前
iwww完成签到,获得积分10
3秒前
云璃完成签到 ,获得积分10
3秒前
超帅的又槐完成签到,获得积分10
3秒前
3秒前
Vicky完成签到,获得积分10
4秒前
4秒前
英俊的铭应助零源采纳,获得10
4秒前
orangelion完成签到,获得积分0
4秒前
大红完成签到,获得积分10
6秒前
悦耳乌冬面完成签到,获得积分20
6秒前
Dicy完成签到,获得积分10
6秒前
hana完成签到 ,获得积分10
6秒前
桂鱼完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
月亮快打烊吖完成签到 ,获得积分10
8秒前
炒米粉发布了新的文献求助10
8秒前
小李同学完成签到,获得积分10
9秒前
9秒前
青山完成签到 ,获得积分10
9秒前
清脆冬卉完成签到,获得积分10
10秒前
crucible完成签到,获得积分10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
赵念婉完成签到,获得积分10
10秒前
yar应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
weilan完成签到,获得积分10
11秒前
大猫爪草完成签到,获得积分10
11秒前
淡淡从阳完成签到,获得积分10
11秒前
limi完成签到 ,获得积分10
12秒前
巴乔完成签到,获得积分10
12秒前
mengwensi完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516504
求助须知:如何正确求助?哪些是违规求助? 4609479
关于积分的说明 14515463
捐赠科研通 4546131
什么是DOI,文献DOI怎么找? 2491130
邀请新用户注册赠送积分活动 1472876
关于科研通互助平台的介绍 1444796