A practical solution based on convolutional neural network for non-intrusive load monitoring

智能电表 计算机科学 卷积神经网络 计算智能 数据挖掘 人工神经网络 能源消耗 能量(信号处理) 人工智能 实时计算 机器学习 智能电网 统计 数学 生态学 生物
作者
Arash Moradzadeh,Behnam Mohammadi‐Ivatloo,Mehdi Abapour,Amjad Anvari‐Moghaddam,Saeid Gholami Farkoush,Sang-Bong Rhee
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:12 (10): 9775-9789 被引量:50
标识
DOI:10.1007/s12652-020-02720-6
摘要

In recent years, the introduction of practical and useful solutions to solve the non-intrusive load monitoring (NILM) as one of the sub-sectors of energy management has posed many challenges. In this paper, an effective and applicable solution based on deep learning called convolutional neural network (CNN) is employed for this purpose. The proposed method with the layer-to-layer structure and extraction of features in the power consumption (PC) curves of each household appliances will be able to detect and distinguish the type of electrical appliances (EAs). Likewise, the load disaggregation for the total home PC will be based on identifying the PC patterns of each EA. To do this, experimental evaluation of reference energy data disaggregation dataset (REDD) related to real-world data and measurement at low frequency is used. The PC curves of each EA are used as input data for training and testing the network. After initial training and testing by the PC data of EAs, the total PC of building obtained from the smart meter are used as input for each network in order to load disaggregation. The trained networks prove to be able to disaggregate the total PC for REDD houses 1, 2, 3, and 4 with a 96.17% mean accuracy. The presented results show the precision and efficiency of the suggested technique for solving NILM problems compared to other used methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mof发布了新的文献求助10
2秒前
liclic完成签到,获得积分10
2秒前
4秒前
5秒前
热心的白莲关注了科研通微信公众号
7秒前
科研通AI2S应助Rcs采纳,获得30
9秒前
9秒前
10秒前
linyalala发布了新的文献求助10
11秒前
11秒前
凶狠的战斗机关注了科研通微信公众号
12秒前
Akim应助fangzhang采纳,获得10
12秒前
大意的念芹完成签到,获得积分10
13秒前
13秒前
14秒前
闪闪凝冬发布了新的文献求助10
15秒前
五小发布了新的文献求助10
16秒前
吴梦瑜完成签到 ,获得积分10
17秒前
玛卡巴卡发布了新的文献求助10
17秒前
小马甲应助Corn_Dog采纳,获得10
18秒前
19秒前
20秒前
CC发布了新的文献求助10
21秒前
小雷发布了新的文献求助10
22秒前
研友_LBKOgn完成签到,获得积分10
23秒前
大模型应助mof采纳,获得10
23秒前
23秒前
坚强的曼雁完成签到,获得积分10
25秒前
zed完成签到,获得积分10
25秒前
科目三应助整齐凌萱采纳,获得10
25秒前
飞快的珩发布了新的文献求助10
26秒前
27秒前
闪闪龙猫发布了新的文献求助10
27秒前
我要向阳而生完成签到 ,获得积分20
28秒前
28秒前
闪闪凝冬完成签到,获得积分10
29秒前
dadada完成签到,获得积分10
30秒前
FashionBoy应助玛卡巴卡采纳,获得10
31秒前
科研通AI2S应助TQY采纳,获得10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139146
求助须知:如何正确求助?哪些是违规求助? 2790083
关于积分的说明 7793577
捐赠科研通 2446452
什么是DOI,文献DOI怎么找? 1301175
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102