A practical solution based on convolutional neural network for non-intrusive load monitoring

智能电表 计算机科学 卷积神经网络 计算智能 数据挖掘 人工神经网络 能源消耗 能量(信号处理) 人工智能 实时计算 机器学习 智能电网 统计 数学 生态学 生物
作者
Arash Moradzadeh,Behnam Mohammadi‐Ivatloo,Mehdi Abapour,Amjad Anvari‐Moghaddam,Saeid Gholami Farkoush,Sang-Bong Rhee
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:12 (10): 9775-9789 被引量:50
标识
DOI:10.1007/s12652-020-02720-6
摘要

In recent years, the introduction of practical and useful solutions to solve the non-intrusive load monitoring (NILM) as one of the sub-sectors of energy management has posed many challenges. In this paper, an effective and applicable solution based on deep learning called convolutional neural network (CNN) is employed for this purpose. The proposed method with the layer-to-layer structure and extraction of features in the power consumption (PC) curves of each household appliances will be able to detect and distinguish the type of electrical appliances (EAs). Likewise, the load disaggregation for the total home PC will be based on identifying the PC patterns of each EA. To do this, experimental evaluation of reference energy data disaggregation dataset (REDD) related to real-world data and measurement at low frequency is used. The PC curves of each EA are used as input data for training and testing the network. After initial training and testing by the PC data of EAs, the total PC of building obtained from the smart meter are used as input for each network in order to load disaggregation. The trained networks prove to be able to disaggregate the total PC for REDD houses 1, 2, 3, and 4 with a 96.17% mean accuracy. The presented results show the precision and efficiency of the suggested technique for solving NILM problems compared to other used methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
略略略发布了新的文献求助10
刚刚
HopeStar发布了新的文献求助10
刚刚
刚刚
研友_nvebxL完成签到,获得积分10
刚刚
刚刚
Stephennnn发布了新的文献求助10
1秒前
1秒前
KK关注了科研通微信公众号
1秒前
1秒前
1秒前
1秒前
嘉嘉完成签到,获得积分10
1秒前
小芦铃完成签到,获得积分20
1秒前
DUDUDUDU完成签到,获得积分10
2秒前
2秒前
2秒前
jiemo_111完成签到,获得积分10
2秒前
共享精神应助浅学者采纳,获得10
2秒前
2秒前
3873发布了新的文献求助10
3秒前
共享精神应助seesun采纳,获得10
3秒前
董浩完成签到,获得积分10
3秒前
好运小徐完成签到,获得积分10
3秒前
Terry发布了新的文献求助30
3秒前
4秒前
tigger发布了新的文献求助10
4秒前
爱吃地锅鱼应助芒果豆豆采纳,获得10
4秒前
瓦片制度完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
Hello应助超甜大西瓜采纳,获得10
5秒前
酱喵完成签到 ,获得积分10
5秒前
Bruce发布了新的文献求助10
5秒前
美好的以寒完成签到,获得积分10
5秒前
青青完成签到 ,获得积分10
5秒前
5秒前
NexusExplorer应助立军采纳,获得50
5秒前
leo7发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410362
求助须知:如何正确求助?哪些是违规求助? 4527799
关于积分的说明 14113081
捐赠科研通 4442420
什么是DOI,文献DOI怎么找? 2437935
邀请新用户注册赠送积分活动 1429942
关于科研通互助平台的介绍 1407876