A practical solution based on convolutional neural network for non-intrusive load monitoring

智能电表 计算机科学 卷积神经网络 计算智能 数据挖掘 人工神经网络 能源消耗 能量(信号处理) 人工智能 实时计算 机器学习 智能电网 统计 数学 生态学 生物
作者
Arash Moradzadeh,Behnam Mohammadi‐Ivatloo,Mehdi Abapour,Amjad Anvari‐Moghaddam,Saeid Gholami Farkoush,Sang-Bong Rhee
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Science+Business Media]
卷期号:12 (10): 9775-9789 被引量:50
标识
DOI:10.1007/s12652-020-02720-6
摘要

In recent years, the introduction of practical and useful solutions to solve the non-intrusive load monitoring (NILM) as one of the sub-sectors of energy management has posed many challenges. In this paper, an effective and applicable solution based on deep learning called convolutional neural network (CNN) is employed for this purpose. The proposed method with the layer-to-layer structure and extraction of features in the power consumption (PC) curves of each household appliances will be able to detect and distinguish the type of electrical appliances (EAs). Likewise, the load disaggregation for the total home PC will be based on identifying the PC patterns of each EA. To do this, experimental evaluation of reference energy data disaggregation dataset (REDD) related to real-world data and measurement at low frequency is used. The PC curves of each EA are used as input data for training and testing the network. After initial training and testing by the PC data of EAs, the total PC of building obtained from the smart meter are used as input for each network in order to load disaggregation. The trained networks prove to be able to disaggregate the total PC for REDD houses 1, 2, 3, and 4 with a 96.17% mean accuracy. The presented results show the precision and efficiency of the suggested technique for solving NILM problems compared to other used methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助开朗的心情采纳,获得10
刚刚
明理小霸王完成签到,获得积分20
1秒前
神明发布了新的文献求助10
2秒前
2秒前
大个应助蛋宝采纳,获得10
2秒前
2秒前
3秒前
3秒前
gyhhl完成签到,获得积分10
3秒前
凌擎宇完成签到,获得积分20
3秒前
4秒前
冷艳的火龙果完成签到,获得积分20
4秒前
Yuanyuan发布了新的文献求助10
4秒前
田様应助朴实山兰采纳,获得10
5秒前
老王发布了新的文献求助10
5秒前
糖优优完成签到,获得积分10
5秒前
谨慎的万言完成签到,获得积分10
5秒前
饱满的大碗完成签到 ,获得积分10
6秒前
风趣的胜应助温暖的以旋采纳,获得10
6秒前
周浅发布了新的文献求助10
7秒前
一心难求完成签到,获得积分10
7秒前
lara应助邹鹏采纳,获得10
7秒前
反卷队队长完成签到,获得积分10
7秒前
奋斗的珍完成签到,获得积分10
7秒前
勤恳立轩应助李佳轩采纳,获得30
8秒前
乔乔兔完成签到 ,获得积分10
8秒前
江哥完成签到,获得积分10
8秒前
9秒前
HAO完成签到,获得积分20
9秒前
勤劳的斑马完成签到,获得积分10
10秒前
华仔应助我在认真做科研采纳,获得10
10秒前
10秒前
慕青应助神明采纳,获得10
10秒前
PPP完成签到,获得积分10
11秒前
11秒前
钟若秋关注了科研通微信公众号
11秒前
11秒前
虾滑完成签到,获得积分10
11秒前
AaronL完成签到,获得积分10
12秒前
cc发布了新的文献求助10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149