A practical solution based on convolutional neural network for non-intrusive load monitoring

智能电表 计算机科学 卷积神经网络 计算智能 数据挖掘 人工神经网络 能源消耗 能量(信号处理) 人工智能 实时计算 机器学习 智能电网 统计 数学 生态学 生物
作者
Arash Moradzadeh,Behnam Mohammadi‐Ivatloo,Mehdi Abapour,Amjad Anvari‐Moghaddam,Saeid Gholami Farkoush,Sang-Bong Rhee
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:12 (10): 9775-9789 被引量:50
标识
DOI:10.1007/s12652-020-02720-6
摘要

In recent years, the introduction of practical and useful solutions to solve the non-intrusive load monitoring (NILM) as one of the sub-sectors of energy management has posed many challenges. In this paper, an effective and applicable solution based on deep learning called convolutional neural network (CNN) is employed for this purpose. The proposed method with the layer-to-layer structure and extraction of features in the power consumption (PC) curves of each household appliances will be able to detect and distinguish the type of electrical appliances (EAs). Likewise, the load disaggregation for the total home PC will be based on identifying the PC patterns of each EA. To do this, experimental evaluation of reference energy data disaggregation dataset (REDD) related to real-world data and measurement at low frequency is used. The PC curves of each EA are used as input data for training and testing the network. After initial training and testing by the PC data of EAs, the total PC of building obtained from the smart meter are used as input for each network in order to load disaggregation. The trained networks prove to be able to disaggregate the total PC for REDD houses 1, 2, 3, and 4 with a 96.17% mean accuracy. The presented results show the precision and efficiency of the suggested technique for solving NILM problems compared to other used methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助发多多采纳,获得10
刚刚
蜗牛123发布了新的文献求助10
2秒前
2秒前
2秒前
赘婿应助David采纳,获得10
2秒前
3秒前
肥皂剧发布了新的文献求助10
3秒前
susu发布了新的文献求助10
4秒前
丰富的莛完成签到,获得积分10
4秒前
916应助nabla采纳,获得10
4秒前
李健应助TT提采纳,获得10
6秒前
ww发布了新的文献求助10
6秒前
杨梅关注了科研通微信公众号
6秒前
7秒前
七个小矮人完成签到,获得积分10
8秒前
丰富的莛发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
kuichen完成签到,获得积分10
8秒前
泓凯骏完成签到 ,获得积分10
9秒前
9秒前
田様应助猪猪hero采纳,获得10
9秒前
11秒前
所所应助fordream采纳,获得10
12秒前
CipherSage应助fordream采纳,获得10
12秒前
13秒前
今后应助含糊的冰安采纳,获得10
14秒前
BINGBING1230发布了新的文献求助30
14秒前
14秒前
LHF发布了新的文献求助10
16秒前
酷波er应助开心不评采纳,获得10
17秒前
17秒前
脑洞疼应助BINGBING1230采纳,获得10
18秒前
杨梅发布了新的文献求助10
18秒前
Wang完成签到,获得积分10
19秒前
20秒前
20秒前
肥皂剧完成签到,获得积分10
20秒前
20秒前
fordream完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315