A practical solution based on convolutional neural network for non-intrusive load monitoring

智能电表 计算机科学 卷积神经网络 计算智能 数据挖掘 人工神经网络 能源消耗 能量(信号处理) 人工智能 实时计算 机器学习 智能电网 统计 数学 生态学 生物
作者
Arash Moradzadeh,Behnam Mohammadi‐Ivatloo,Mehdi Abapour,Amjad Anvari‐Moghaddam,Saeid Gholami Farkoush,Sang-Bong Rhee
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:12 (10): 9775-9789 被引量:50
标识
DOI:10.1007/s12652-020-02720-6
摘要

In recent years, the introduction of practical and useful solutions to solve the non-intrusive load monitoring (NILM) as one of the sub-sectors of energy management has posed many challenges. In this paper, an effective and applicable solution based on deep learning called convolutional neural network (CNN) is employed for this purpose. The proposed method with the layer-to-layer structure and extraction of features in the power consumption (PC) curves of each household appliances will be able to detect and distinguish the type of electrical appliances (EAs). Likewise, the load disaggregation for the total home PC will be based on identifying the PC patterns of each EA. To do this, experimental evaluation of reference energy data disaggregation dataset (REDD) related to real-world data and measurement at low frequency is used. The PC curves of each EA are used as input data for training and testing the network. After initial training and testing by the PC data of EAs, the total PC of building obtained from the smart meter are used as input for each network in order to load disaggregation. The trained networks prove to be able to disaggregate the total PC for REDD houses 1, 2, 3, and 4 with a 96.17% mean accuracy. The presented results show the precision and efficiency of the suggested technique for solving NILM problems compared to other used methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mayun95发布了新的文献求助10
1秒前
So完成签到 ,获得积分10
1秒前
M旭旭发布了新的文献求助10
1秒前
王子姗完成签到,获得积分10
1秒前
田様应助fczx采纳,获得10
3秒前
123sly发布了新的文献求助30
4秒前
Akim应助QinQin采纳,获得10
5秒前
Herman完成签到 ,获得积分10
5秒前
Twonej给呢呢的求助进行了留言
5秒前
xing完成签到,获得积分10
6秒前
6秒前
CipherSage应助李卓航采纳,获得10
6秒前
6秒前
M旭旭完成签到,获得积分10
7秒前
科研通AI6应助于富强采纳,获得10
8秒前
Ganann完成签到 ,获得积分10
9秒前
vv完成签到 ,获得积分10
9秒前
有趣的银发布了新的文献求助10
9秒前
10秒前
11秒前
上官若男应助yun采纳,获得40
12秒前
15秒前
田様应助Cyuan采纳,获得10
15秒前
15秒前
123sly完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
传奇3应助QinQin采纳,获得10
19秒前
严天飞发布了新的文献求助10
20秒前
Nora发布了新的文献求助10
20秒前
三三完成签到,获得积分10
20秒前
youyouyou发布了新的文献求助10
21秒前
orangel完成签到,获得积分10
23秒前
李卓航发布了新的文献求助10
24秒前
24秒前
25秒前
会会完成签到 ,获得积分10
25秒前
25秒前
ashin17完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716