A practical solution based on convolutional neural network for non-intrusive load monitoring

智能电表 计算机科学 卷积神经网络 计算智能 数据挖掘 人工神经网络 能源消耗 能量(信号处理) 人工智能 实时计算 机器学习 智能电网 统计 数学 生态学 生物
作者
Arash Moradzadeh,Behnam Mohammadi‐Ivatloo,Mehdi Abapour,Amjad Anvari‐Moghaddam,Saeid Gholami Farkoush,Sang-Bong Rhee
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:12 (10): 9775-9789 被引量:50
标识
DOI:10.1007/s12652-020-02720-6
摘要

In recent years, the introduction of practical and useful solutions to solve the non-intrusive load monitoring (NILM) as one of the sub-sectors of energy management has posed many challenges. In this paper, an effective and applicable solution based on deep learning called convolutional neural network (CNN) is employed for this purpose. The proposed method with the layer-to-layer structure and extraction of features in the power consumption (PC) curves of each household appliances will be able to detect and distinguish the type of electrical appliances (EAs). Likewise, the load disaggregation for the total home PC will be based on identifying the PC patterns of each EA. To do this, experimental evaluation of reference energy data disaggregation dataset (REDD) related to real-world data and measurement at low frequency is used. The PC curves of each EA are used as input data for training and testing the network. After initial training and testing by the PC data of EAs, the total PC of building obtained from the smart meter are used as input for each network in order to load disaggregation. The trained networks prove to be able to disaggregate the total PC for REDD houses 1, 2, 3, and 4 with a 96.17% mean accuracy. The presented results show the precision and efficiency of the suggested technique for solving NILM problems compared to other used methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aabot完成签到,获得积分10
1秒前
柒玉染发布了新的文献求助10
1秒前
2秒前
。。。发布了新的文献求助10
2秒前
Eric完成签到,获得积分10
3秒前
梅比乌斯博士救救我完成签到,获得积分10
3秒前
4秒前
4秒前
子舟发布了新的文献求助10
5秒前
5秒前
今天完成签到,获得积分10
6秒前
E10100发布了新的文献求助10
6秒前
跳跳狗发布了新的文献求助10
7秒前
灯箱发布了新的文献求助10
7秒前
犹豫的灵完成签到,获得积分10
7秒前
7秒前
7秒前
柒玉染完成签到,获得积分10
8秒前
jinyu完成签到,获得积分10
8秒前
8秒前
年轻上线发布了新的文献求助10
9秒前
cgz发布了新的文献求助10
9秒前
10秒前
10秒前
jxc077完成签到,获得积分20
11秒前
11秒前
12秒前
13秒前
申木发布了新的文献求助10
14秒前
14秒前
Aieur发布了新的文献求助10
15秒前
15秒前
16秒前
12Q发布了新的文献求助20
16秒前
17秒前
眯眯眼的蚂蚁完成签到 ,获得积分10
17秒前
怡然的元绿完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602562
求助须知:如何正确求助?哪些是违规求助? 4687654
关于积分的说明 14850581
捐赠科研通 4684527
什么是DOI,文献DOI怎么找? 2539963
邀请新用户注册赠送积分活动 1506690
关于科研通互助平台的介绍 1471428