Hierarchical Graph Neural Networks for Few-Shot Learning

计算机科学 人工智能 图形 联营 机器学习 人工神经网络 水准点(测量) 班级(哲学) 理论计算机科学 大地测量学 地理
作者
Cen Chen,Kenli Li,Wei Wei,Joey Tianyi Zhou,Zeng Zeng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 240-252 被引量:126
标识
DOI:10.1109/tcsvt.2021.3058098
摘要

Recent graph neural network (GNN) based methods for few-shot learning (FSL) represent the samples of interest as a fully-connected graph and conduct reasoning on the nodes flatly, which ignores the hierarchical correlations among nodes. However, real-world categories may have hierarchical structures, and for FSL, it is important to extract the distinguishing features of the categories from individual samples. To explore this, we propose a novel hierarchical graph neural network (HGNN) for FSL, which consists of three parts, i.e., bottom-up reasoning, top-down reasoning, and skip connections, to enable the efficient learning of multi-level relationships. For the bottom-up reasoning, we design intra-class k-nearest neighbor pooling (intra-class knnPool) and inter-class knnPool layers, to conduct hierarchical learning for both the intra- and inter-class nodes. For the top-down reasoning, we propose to utilize graph unpooling (gUnpool) layers to restore the down-sampled graph into its original size. Skip connections are proposed to fuse multi-level features for the final node classification. The parameters of HGNN are learned by episodic training with the signal of node losses, which aims to train a well-generalizable model for recognizing unseen classes with few labeled data. Experimental results on benchmark datasets have demonstrated that HGNN outperforms other state-of-the-art GNN based methods significantly, for both transductive and non-transductive FSL tasks. The dataset as well as the source code can be downloaded online 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muse_quan发布了新的文献求助10
刚刚
豪厉害完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
海东来应助vv的平行宇宙采纳,获得30
1秒前
西野完成签到,获得积分10
1秒前
专注玩手机的可乐完成签到 ,获得积分10
1秒前
ZGH完成签到,获得积分10
1秒前
香蕉觅云应助zyq采纳,获得10
1秒前
进击发布了新的文献求助10
2秒前
李健应助失眠的海云采纳,获得10
2秒前
2秒前
含蓄康完成签到,获得积分20
2秒前
4秒前
4秒前
熊大完成签到,获得积分10
4秒前
4秒前
jrlhappy发布了新的文献求助10
4秒前
Sky36001完成签到,获得积分10
5秒前
5秒前
5秒前
swj发布了新的文献求助10
5秒前
慕青应助CDKSEVEN采纳,获得10
6秒前
6秒前
yoyo发布了新的文献求助10
6秒前
6秒前
7秒前
hanxin108完成签到,获得积分10
8秒前
思源应助机智的小霸王采纳,获得10
8秒前
8秒前
8秒前
9秒前
嘉芮完成签到,获得积分10
9秒前
性静H情逸发布了新的文献求助10
9秒前
Amandar发布了新的文献求助10
9秒前
Sky36001发布了新的文献求助30
9秒前
丘比特应助机智毛豆采纳,获得10
9秒前
9秒前
负责金毛完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345