Hierarchical Graph Neural Networks for Few-Shot Learning

计算机科学 人工智能 图形 联营 机器学习 人工神经网络 水准点(测量) 班级(哲学) 理论计算机科学 大地测量学 地理
作者
Cen Chen,Kenli Li,Wei Wei,Joey Tianyi Zhou,Zeng Zeng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 240-252 被引量:126
标识
DOI:10.1109/tcsvt.2021.3058098
摘要

Recent graph neural network (GNN) based methods for few-shot learning (FSL) represent the samples of interest as a fully-connected graph and conduct reasoning on the nodes flatly, which ignores the hierarchical correlations among nodes. However, real-world categories may have hierarchical structures, and for FSL, it is important to extract the distinguishing features of the categories from individual samples. To explore this, we propose a novel hierarchical graph neural network (HGNN) for FSL, which consists of three parts, i.e., bottom-up reasoning, top-down reasoning, and skip connections, to enable the efficient learning of multi-level relationships. For the bottom-up reasoning, we design intra-class k-nearest neighbor pooling (intra-class knnPool) and inter-class knnPool layers, to conduct hierarchical learning for both the intra- and inter-class nodes. For the top-down reasoning, we propose to utilize graph unpooling (gUnpool) layers to restore the down-sampled graph into its original size. Skip connections are proposed to fuse multi-level features for the final node classification. The parameters of HGNN are learned by episodic training with the signal of node losses, which aims to train a well-generalizable model for recognizing unseen classes with few labeled data. Experimental results on benchmark datasets have demonstrated that HGNN outperforms other state-of-the-art GNN based methods significantly, for both transductive and non-transductive FSL tasks. The dataset as well as the source code can be downloaded online 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsx发布了新的文献求助20
刚刚
自信雪冥完成签到,获得积分10
刚刚
青林发布了新的文献求助10
刚刚
abbywu应助Fairy采纳,获得10
1秒前
李山鬼完成签到,获得积分20
1秒前
cherry发布了新的文献求助10
1秒前
wsff发布了新的文献求助10
1秒前
2秒前
Xiaopan完成签到 ,获得积分10
2秒前
小毛毛发布了新的文献求助10
2秒前
yy完成签到 ,获得积分10
2秒前
2秒前
1111111发布了新的文献求助10
2秒前
慕青应助开心的西瓜采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得30
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
so000应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得30
3秒前
Hello应助科研通管家采纳,获得100
3秒前
英姑应助科研通管家采纳,获得10
4秒前
whatever应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得20
4秒前
wanci应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
hnl应助科研通管家采纳,获得30
4秒前
王饱饱应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
劲秉应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
隐形曼青应助wwwcom12采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461762
求助须知:如何正确求助?哪些是违规求助? 3055433
关于积分的说明 9047944
捐赠科研通 2745204
什么是DOI,文献DOI怎么找? 1506061
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695450