Hierarchical Graph Neural Networks for Few-Shot Learning

计算机科学 人工智能 图形 联营 机器学习 人工神经网络 水准点(测量) 班级(哲学) 理论计算机科学 大地测量学 地理
作者
Cen Chen,Kenli Li,Wei Wei,Joey Tianyi Zhou,Zeng Zeng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 240-252 被引量:139
标识
DOI:10.1109/tcsvt.2021.3058098
摘要

Recent graph neural network (GNN) based methods for few-shot learning (FSL) represent the samples of interest as a fully-connected graph and conduct reasoning on the nodes flatly, which ignores the hierarchical correlations among nodes. However, real-world categories may have hierarchical structures, and for FSL, it is important to extract the distinguishing features of the categories from individual samples. To explore this, we propose a novel hierarchical graph neural network (HGNN) for FSL, which consists of three parts, i.e., bottom-up reasoning, top-down reasoning, and skip connections, to enable the efficient learning of multi-level relationships. For the bottom-up reasoning, we design intra-class k-nearest neighbor pooling (intra-class knnPool) and inter-class knnPool layers, to conduct hierarchical learning for both the intra- and inter-class nodes. For the top-down reasoning, we propose to utilize graph unpooling (gUnpool) layers to restore the down-sampled graph into its original size. Skip connections are proposed to fuse multi-level features for the final node classification. The parameters of HGNN are learned by episodic training with the signal of node losses, which aims to train a well-generalizable model for recognizing unseen classes with few labeled data. Experimental results on benchmark datasets have demonstrated that HGNN outperforms other state-of-the-art GNN based methods significantly, for both transductive and non-transductive FSL tasks. The dataset as well as the source code can be downloaded online 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的念头完成签到,获得积分10
刚刚
annie完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助50
1秒前
机器猫发布了新的文献求助30
2秒前
上官若男应助陈飞鹏采纳,获得10
3秒前
打打应助奶油布丁采纳,获得10
3秒前
FashionBoy应助yuan采纳,获得10
5秒前
牛奶开水完成签到 ,获得积分10
5秒前
9秒前
浮生若梦完成签到,获得积分10
10秒前
领导范儿应助lzn采纳,获得10
10秒前
打打应助pia叽采纳,获得10
10秒前
长情半邪发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
zx完成签到,获得积分10
14秒前
15秒前
zz完成签到,获得积分10
15秒前
加菲丰丰应助Andy采纳,获得30
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
小言完成签到 ,获得积分10
17秒前
英姑应助dylan采纳,获得10
17秒前
jyby发布了新的文献求助10
18秒前
19秒前
nn应助羊羊呀采纳,获得10
19秒前
充电宝应助超级幼旋采纳,获得50
19秒前
陈飞鹏发布了新的文献求助10
20秒前
华仔应助没意思的意思采纳,获得10
20秒前
SciGPT应助倩倩采纳,获得10
20秒前
yuan发布了新的文献求助10
20秒前
小邹发布了新的文献求助10
21秒前
mf完成签到 ,获得积分10
21秒前
orixero应助ZhenpuWang采纳,获得10
22秒前
anlikek完成签到,获得积分10
22秒前
上官若男应助kk采纳,获得10
23秒前
桐桐应助yyy采纳,获得30
23秒前
王小小发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003103
求助须知:如何正确求助?哪些是违规求助? 4247982
关于积分的说明 13234780
捐赠科研通 4046924
什么是DOI,文献DOI怎么找? 2214060
邀请新用户注册赠送积分活动 1224112
关于科研通互助平台的介绍 1144386