Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion

计算机科学 人工智能 图像融合 特征学习 特征(语言学) 模式识别(心理学) 深度学习 集成学习 图像(数学) GSM演进的增强数据速率 融合 比例(比率) 计算机视觉 机器学习 哲学 物理 量子力学 语言学
作者
Jinyuan Liu,Xin Fan,Ji Jiang,Risheng Liu,Zhongxuan Luo
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 105-119 被引量:177
标识
DOI:10.1109/tcsvt.2021.3056725
摘要

Image fusion integrates a series of images acquired from different sensors, e.g. , infrared and visible, outputting an image with richer information than either one. Traditional and recent deep-based methods have difficulties in preserving prominent structures and recovering vital textural details for practical applications. In this article, we propose a deep network for infrared and visible image fusion cascading a feature learning module with a fusion learning mechanism. Firstly, we apply a coarse-to-fine deep architecture to learn multi-scale features for multi-modal images, which enables discovering prominent common structures for later fusion operations. The proposed feature learning module requires no well-aligned image pairs for training. Compared with the existing learning-based methods, the proposed feature learning module can ensemble numerous examples from respective modals for training, increasing the ability of feature representation. Secondly, we design an edge-guided attention mechanism upon the multi-scale features to guide the fusion focusing on common structures, thus recovering details while attenuating noise. Moreover, we provide a new aligned infrared and visible image fusion dataset, RealStreet, collected in various practical scenarios for comprehensive evaluation. Extensive experiments on two benchmarks, TNO and RealStreet, demonstrate the superiority of the proposed method over the state-of-the-art in terms of both visual inspection and objective analysis on six evaluation metrics. We also conduct the experiments on the FLIR and NIR datasets, containing foggy weather and poor light conditions, to verify the generalization and robustness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干千柳发布了新的文献求助10
1秒前
无花果应助Reftro采纳,获得10
1秒前
杳鸢应助科研通管家采纳,获得30
2秒前
心台应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
4秒前
敏感的山彤完成签到,获得积分10
4秒前
小猪孩完成签到,获得积分10
5秒前
卿xx发布了新的文献求助10
5秒前
6秒前
树袋子发布了新的文献求助10
6秒前
俊逸小笼包应助零零采纳,获得30
6秒前
CL发布了新的文献求助10
8秒前
温暖南莲完成签到,获得积分10
9秒前
小翟不宅发布了新的文献求助10
9秒前
江江江江发布了新的文献求助10
10秒前
小蘑菇应助heart采纳,获得10
10秒前
踏实觅双完成签到,获得积分20
11秒前
桐桐应助小鹿采纳,获得10
11秒前
在水一方应助kb采纳,获得10
11秒前
Tylose完成签到,获得积分10
12秒前
等等小ur完成签到,获得积分10
14秒前
无花果应助阿橘采纳,获得10
15秒前
所所应助丹妮采纳,获得10
15秒前
英俊的铭应助细腻海蓝采纳,获得10
17秒前
17秒前
烟花应助小翟不宅采纳,获得10
18秒前
Lucas应助榴莲小胖采纳,获得10
19秒前
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229041
求助须知:如何正确求助?哪些是违规求助? 2876786
关于积分的说明 8196563
捐赠科研通 2544175
什么是DOI,文献DOI怎么找? 1374187
科研通“疑难数据库(出版商)”最低求助积分说明 646906
邀请新用户注册赠送积分活动 621640