亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs

角化囊肿 成釉细胞瘤 卷积神经网络 计算机科学 人工智能 牙源性的 直方图均衡化 医学 模式识别(心理学) 放射科 口腔正畸科 直方图 病理 臼齿 图像(数学)
作者
Zijia Liu,Jiannan Liu,Zijie Zhou,Qiaoyu Zhang,Hao Wu,Guangtao Zhai,Jing Han
出处
期刊:International Journal of Computer Assisted Radiology and Surgery [Springer Science+Business Media]
卷期号:16 (3): 415-422 被引量:50
标识
DOI:10.1007/s11548-021-02309-0
摘要

Abstract Purpose The differentiation of the ameloblastoma and odontogenic keratocyst directly affects the formulation of surgical plans, while the results of differential diagnosis by imaging alone are not satisfactory. This paper aimed to propose an algorithm based on convolutional neural networks (CNN) structure to significantly improve the classification accuracy of these two tumors. Methods A total of 420 digital panoramic radiographs provided by 401 patients were acquired from the Shanghai Ninth People’s Hospital. Each of them was cropped to a patch as a region of interest by radiologists. Furthermore, inverse logarithm transformation and histogram equalization were employed to increase the contrast of the region of interest (ROI). To alleviate overfitting, random rotation and flip transform as data augmentation algorithms were adopted to the training dataset. We provided a CNN structure based on a transfer learning algorithm, which consists of two branches in parallel. The output of the network is a two-dimensional vector representing the predicted scores of ameloblastoma and odontogenic keratocyst, respectively. Results The proposed network achieved an accuracy of 90.36% (AUC = 0.946), while sensitivity and specificity were 92.88% and 87.80%, respectively. Two other networks named VGG-19 and ResNet-50 and a network trained from scratch were also used in the experiment, which achieved accuracy of 80.72%, 78.31%, and 69.88%, respectively. Conclusions We proposed an algorithm that significantly improves the differential diagnosis accuracy of ameloblastoma and odontogenic keratocyst and has the utility to provide a reliable recommendation to the oral maxillofacial specialists before surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐家申发布了新的文献求助10
6秒前
科研通AI2S应助陈刘轩采纳,获得10
6秒前
9秒前
陈刘轩完成签到,获得积分10
14秒前
15秒前
Mr兔仙森完成签到,获得积分10
17秒前
19秒前
detective发布了新的文献求助10
22秒前
耍酷背包发布了新的文献求助10
22秒前
时势造英雄完成签到 ,获得积分10
23秒前
29秒前
29秒前
香蕉觅云应助detective采纳,获得10
30秒前
Freedom_1996完成签到,获得积分10
30秒前
陈亮完成签到,获得积分10
34秒前
科研女侠发布了新的文献求助10
34秒前
36秒前
39秒前
陈亮发布了新的文献求助10
40秒前
多情的忆之完成签到,获得积分10
41秒前
jagger发布了新的文献求助20
44秒前
aike完成签到,获得积分10
45秒前
47秒前
47秒前
狂野的以云完成签到,获得积分10
48秒前
Kyone完成签到,获得积分10
49秒前
韩腾博发布了新的文献求助10
52秒前
大蛋儿完成签到,获得积分10
53秒前
yuyuyu发布了新的文献求助10
57秒前
58秒前
罗大大完成签到 ,获得积分10
1分钟前
张emo完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
喜悦宫苴完成签到,获得积分10
1分钟前
活泼新儿完成签到 ,获得积分10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
打打应助张emo采纳,获得10
1分钟前
思源应助科研通管家采纳,获得30
1分钟前
科研女侠完成签到,获得积分20
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959981
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128438
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803056