Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs

角化囊肿 成釉细胞瘤 卷积神经网络 计算机科学 人工智能 牙源性的 直方图均衡化 医学 模式识别(心理学) 放射科 口腔正畸科 直方图 病理 臼齿 图像(数学)
作者
Zijia Liu,Jiannan Liu,Zijie Zhou,Qiaoyu Zhang,Hao Wu,Guangtao Zhai,Jing Han
出处
期刊:International Journal of Computer Assisted Radiology and Surgery [Springer Science+Business Media]
卷期号:16 (3): 415-422 被引量:50
标识
DOI:10.1007/s11548-021-02309-0
摘要

Abstract Purpose The differentiation of the ameloblastoma and odontogenic keratocyst directly affects the formulation of surgical plans, while the results of differential diagnosis by imaging alone are not satisfactory. This paper aimed to propose an algorithm based on convolutional neural networks (CNN) structure to significantly improve the classification accuracy of these two tumors. Methods A total of 420 digital panoramic radiographs provided by 401 patients were acquired from the Shanghai Ninth People’s Hospital. Each of them was cropped to a patch as a region of interest by radiologists. Furthermore, inverse logarithm transformation and histogram equalization were employed to increase the contrast of the region of interest (ROI). To alleviate overfitting, random rotation and flip transform as data augmentation algorithms were adopted to the training dataset. We provided a CNN structure based on a transfer learning algorithm, which consists of two branches in parallel. The output of the network is a two-dimensional vector representing the predicted scores of ameloblastoma and odontogenic keratocyst, respectively. Results The proposed network achieved an accuracy of 90.36% (AUC = 0.946), while sensitivity and specificity were 92.88% and 87.80%, respectively. Two other networks named VGG-19 and ResNet-50 and a network trained from scratch were also used in the experiment, which achieved accuracy of 80.72%, 78.31%, and 69.88%, respectively. Conclusions We proposed an algorithm that significantly improves the differential diagnosis accuracy of ameloblastoma and odontogenic keratocyst and has the utility to provide a reliable recommendation to the oral maxillofacial specialists before surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助柔柔采纳,获得10
1秒前
1秒前
1秒前
1秒前
3秒前
4秒前
NexusExplorer应助Xin采纳,获得10
5秒前
popvich应助甘特采纳,获得20
5秒前
靓丽的熠彤完成签到,获得积分10
5秒前
min发布了新的文献求助10
5秒前
迷人世开发布了新的文献求助10
6秒前
活泼的不言完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
Lucas应助雪白的西牛采纳,获得10
9秒前
9秒前
丘比特应助haoooooooooooooo采纳,获得10
10秒前
danli发布了新的文献求助20
11秒前
12秒前
坦率夕阳发布了新的文献求助10
12秒前
12秒前
陈陈发布了新的文献求助10
13秒前
柔柔发布了新的文献求助10
13秒前
zzz发布了新的文献求助10
14秒前
饱满南松发布了新的文献求助10
15秒前
星星发布了新的文献求助10
15秒前
坚强的听枫完成签到,获得积分10
15秒前
丹dan完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
19秒前
19秒前
20秒前
鼓瑟不吹笙完成签到 ,获得积分10
20秒前
yukang应助李龙采纳,获得10
20秒前
20秒前
22秒前
霸气慕山完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979867
求助须知:如何正确求助?哪些是违规求助? 4232400
关于积分的说明 13183620
捐赠科研通 4023583
什么是DOI,文献DOI怎么找? 2201384
邀请新用户注册赠送积分活动 1213844
关于科研通互助平台的介绍 1130089