亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs

角化囊肿 成釉细胞瘤 卷积神经网络 计算机科学 人工智能 牙源性的 直方图均衡化 医学 模式识别(心理学) 放射科 口腔正畸科 直方图 病理 臼齿 图像(数学)
作者
Zijia Liu,Jiannan Liu,Zijie Zhou,Qiaoyu Zhang,Hao Wu,Guangtao Zhai,Jing Han
出处
期刊:International Journal of Computer Assisted Radiology and Surgery [Springer Nature]
卷期号:16 (3): 415-422 被引量:50
标识
DOI:10.1007/s11548-021-02309-0
摘要

Abstract Purpose The differentiation of the ameloblastoma and odontogenic keratocyst directly affects the formulation of surgical plans, while the results of differential diagnosis by imaging alone are not satisfactory. This paper aimed to propose an algorithm based on convolutional neural networks (CNN) structure to significantly improve the classification accuracy of these two tumors. Methods A total of 420 digital panoramic radiographs provided by 401 patients were acquired from the Shanghai Ninth People’s Hospital. Each of them was cropped to a patch as a region of interest by radiologists. Furthermore, inverse logarithm transformation and histogram equalization were employed to increase the contrast of the region of interest (ROI). To alleviate overfitting, random rotation and flip transform as data augmentation algorithms were adopted to the training dataset. We provided a CNN structure based on a transfer learning algorithm, which consists of two branches in parallel. The output of the network is a two-dimensional vector representing the predicted scores of ameloblastoma and odontogenic keratocyst, respectively. Results The proposed network achieved an accuracy of 90.36% (AUC = 0.946), while sensitivity and specificity were 92.88% and 87.80%, respectively. Two other networks named VGG-19 and ResNet-50 and a network trained from scratch were also used in the experiment, which achieved accuracy of 80.72%, 78.31%, and 69.88%, respectively. Conclusions We proposed an algorithm that significantly improves the differential diagnosis accuracy of ameloblastoma and odontogenic keratocyst and has the utility to provide a reliable recommendation to the oral maxillofacial specialists before surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
6秒前
ylh发布了新的文献求助10
7秒前
勤恳八宝粥完成签到 ,获得积分10
8秒前
抹茶发布了新的文献求助10
10秒前
yukky发布了新的文献求助10
13秒前
28秒前
30秒前
不言而喻应助Marciu33采纳,获得10
30秒前
30秒前
123发布了新的文献求助10
31秒前
魔幻的芳完成签到,获得积分10
31秒前
35秒前
火星上的宝马完成签到,获得积分10
35秒前
35秒前
35秒前
俏皮跳跳糖完成签到,获得积分10
36秒前
悲凉的忆南完成签到,获得积分10
38秒前
桃子e发布了新的文献求助10
39秒前
xiaxiao完成签到,获得积分0
40秒前
huan发布了新的文献求助10
41秒前
陈旧完成签到,获得积分10
41秒前
欣欣子完成签到,获得积分10
45秒前
46秒前
sunstar完成签到,获得积分10
48秒前
72219发布了新的文献求助10
50秒前
yxl完成签到,获得积分10
52秒前
Jasper应助huan采纳,获得10
54秒前
可耐的盈完成签到,获得积分10
55秒前
烟消云散完成签到,获得积分10
55秒前
cc完成签到,获得积分20
55秒前
56秒前
绿毛水怪完成签到,获得积分10
58秒前
FashionBoy应助抹茶采纳,获得10
1分钟前
钱百川发布了新的文献求助10
1分钟前
lsc完成签到,获得积分10
1分钟前
小fei完成签到,获得积分10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
时尚身影完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780200
求助须知:如何正确求助?哪些是违规求助? 5653166
关于积分的说明 15452863
捐赠科研通 4910949
什么是DOI,文献DOI怎么找? 2643155
邀请新用户注册赠送积分活动 1590810
关于科研通互助平台的介绍 1545294