Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs

角化囊肿 成釉细胞瘤 卷积神经网络 计算机科学 人工智能 牙源性的 直方图均衡化 医学 模式识别(心理学) 放射科 口腔正畸科 直方图 病理 臼齿 图像(数学)
作者
Zijia Liu,Jiannan Liu,Zijie Zhou,Qiaoyu Zhang,Hao Wu,Guangtao Zhai,Jing Han
出处
期刊:International Journal of Computer Assisted Radiology and Surgery [Springer Nature]
卷期号:16 (3): 415-422 被引量:50
标识
DOI:10.1007/s11548-021-02309-0
摘要

Abstract Purpose The differentiation of the ameloblastoma and odontogenic keratocyst directly affects the formulation of surgical plans, while the results of differential diagnosis by imaging alone are not satisfactory. This paper aimed to propose an algorithm based on convolutional neural networks (CNN) structure to significantly improve the classification accuracy of these two tumors. Methods A total of 420 digital panoramic radiographs provided by 401 patients were acquired from the Shanghai Ninth People’s Hospital. Each of them was cropped to a patch as a region of interest by radiologists. Furthermore, inverse logarithm transformation and histogram equalization were employed to increase the contrast of the region of interest (ROI). To alleviate overfitting, random rotation and flip transform as data augmentation algorithms were adopted to the training dataset. We provided a CNN structure based on a transfer learning algorithm, which consists of two branches in parallel. The output of the network is a two-dimensional vector representing the predicted scores of ameloblastoma and odontogenic keratocyst, respectively. Results The proposed network achieved an accuracy of 90.36% (AUC = 0.946), while sensitivity and specificity were 92.88% and 87.80%, respectively. Two other networks named VGG-19 and ResNet-50 and a network trained from scratch were also used in the experiment, which achieved accuracy of 80.72%, 78.31%, and 69.88%, respectively. Conclusions We proposed an algorithm that significantly improves the differential diagnosis accuracy of ameloblastoma and odontogenic keratocyst and has the utility to provide a reliable recommendation to the oral maxillofacial specialists before surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鼠鼠想养猫完成签到,获得积分10
1秒前
xx完成签到 ,获得积分10
2秒前
2秒前
2秒前
zzzzzz发布了新的文献求助10
2秒前
橘落完成签到 ,获得积分10
3秒前
3秒前
天真的冬寒完成签到,获得积分20
3秒前
火星上的毛豆完成签到 ,获得积分10
4秒前
4秒前
Nicole完成签到,获得积分10
4秒前
5秒前
斯文败类应助咚咚采纳,获得10
5秒前
枣核儿完成签到,获得积分10
5秒前
wuta完成签到,获得积分10
5秒前
焱冰完成签到,获得积分10
5秒前
韩soso发布了新的文献求助10
6秒前
稳重伊发布了新的文献求助30
8秒前
8秒前
李帆发布了新的文献求助10
9秒前
9秒前
标致小甜瓜完成签到,获得积分10
9秒前
小坚强发布了新的文献求助10
10秒前
NexusExplorer应助平常的之槐采纳,获得10
10秒前
李倇仪完成签到 ,获得积分10
10秒前
bkagyin应助紫色奶萨采纳,获得10
11秒前
orixero应助雅琳子采纳,获得10
12秒前
云村的乌拉完成签到,获得积分10
12秒前
13秒前
Moving_Dr发布了新的文献求助10
15秒前
hmfyl完成签到,获得积分10
16秒前
静默向上完成签到,获得积分10
17秒前
子楚发布了新的文献求助10
17秒前
17秒前
ccc发布了新的文献求助10
19秒前
19秒前
Wx完成签到,获得积分10
20秒前
乐哉发布了新的文献求助10
20秒前
年轻的冰海完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304504
求助须知:如何正确求助?哪些是违规求助? 2938464
关于积分的说明 8488809
捐赠科研通 2612923
什么是DOI,文献DOI怎么找? 1427023
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647385