Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs

角化囊肿 成釉细胞瘤 卷积神经网络 计算机科学 人工智能 牙源性的 直方图均衡化 医学 模式识别(心理学) 放射科 口腔正畸科 直方图 病理 臼齿 图像(数学)
作者
Zijia Liu,Jiannan Liu,Zijie Zhou,Qiaoyu Zhang,Hao Wu,Guangtao Zhai,Jing Han
出处
期刊:International Journal of Computer Assisted Radiology and Surgery [Springer Nature]
卷期号:16 (3): 415-422 被引量:50
标识
DOI:10.1007/s11548-021-02309-0
摘要

Abstract Purpose The differentiation of the ameloblastoma and odontogenic keratocyst directly affects the formulation of surgical plans, while the results of differential diagnosis by imaging alone are not satisfactory. This paper aimed to propose an algorithm based on convolutional neural networks (CNN) structure to significantly improve the classification accuracy of these two tumors. Methods A total of 420 digital panoramic radiographs provided by 401 patients were acquired from the Shanghai Ninth People’s Hospital. Each of them was cropped to a patch as a region of interest by radiologists. Furthermore, inverse logarithm transformation and histogram equalization were employed to increase the contrast of the region of interest (ROI). To alleviate overfitting, random rotation and flip transform as data augmentation algorithms were adopted to the training dataset. We provided a CNN structure based on a transfer learning algorithm, which consists of two branches in parallel. The output of the network is a two-dimensional vector representing the predicted scores of ameloblastoma and odontogenic keratocyst, respectively. Results The proposed network achieved an accuracy of 90.36% (AUC = 0.946), while sensitivity and specificity were 92.88% and 87.80%, respectively. Two other networks named VGG-19 and ResNet-50 and a network trained from scratch were also used in the experiment, which achieved accuracy of 80.72%, 78.31%, and 69.88%, respectively. Conclusions We proposed an algorithm that significantly improves the differential diagnosis accuracy of ameloblastoma and odontogenic keratocyst and has the utility to provide a reliable recommendation to the oral maxillofacial specialists before surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
彭于晏完成签到,获得积分10
刚刚
勤劳元瑶完成签到,获得积分10
刚刚
whatever举报muzi求助涉嫌违规
1秒前
小白发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
搬砖工完成签到,获得积分10
2秒前
Lucas应助圈圈采纳,获得10
3秒前
NexusExplorer应助韭菜盒子采纳,获得10
3秒前
3秒前
Harlotte发布了新的文献求助10
3秒前
就是我完成签到,获得积分10
3秒前
单薄凌蝶应助文件撤销了驳回
3秒前
王小明完成签到,获得积分10
3秒前
OKO完成签到,获得积分10
3秒前
yy完成签到 ,获得积分10
4秒前
丸子放盆里完成签到,获得积分10
4秒前
疯狂的青亦完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
6秒前
zink发布了新的文献求助10
6秒前
小杰完成签到 ,获得积分10
6秒前
qaq发布了新的文献求助10
6秒前
子时月发布了新的文献求助10
7秒前
8秒前
是冬天完成签到 ,获得积分10
8秒前
Lxxx_7完成签到 ,获得积分10
8秒前
12完成签到 ,获得积分10
9秒前
sai发布了新的文献求助10
9秒前
CodeCraft应助wzxxxx采纳,获得10
10秒前
Andy完成签到 ,获得积分10
10秒前
小可完成签到 ,获得积分10
11秒前
斯文败类应助shanjianjie采纳,获得20
11秒前
笋蒸鱼发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740