亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images

分割 数字化病理学 苏木精 人工智能 曙红 计算机科学 卷积神经网络 模式识别(心理学) 像素 深度学习 图像分割 计算机视觉 病理 医学 染色
作者
Simon Graham,Quoc Dang Vu,Shan E Ahmed Raza,Ayesha Azam,Yee Wah Tsang,Jin Tae Kwak,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:58: 101563-101563 被引量:1049
标识
DOI:10.1016/j.media.2019.101563
摘要

Nuclear segmentation and classification within Haematoxylin & Eosin stained histology images is a fundamental prerequisite in the digital pathology work-flow. The development of automated methods for nuclear segmentation and classification enables the quantitative analysis of tens of thousands of nuclei within a whole-slide pathology image, opening up possibilities of further analysis of large-scale nuclear morphometry. However, automated nuclear segmentation and classification is faced with a major challenge in that there are several different types of nuclei, some of them exhibiting large intra-class variability such as the nuclei of tumour cells. Additionally, some of the nuclei are often clustered together. To address these challenges, we present a novel convolutional neural network for simultaneous nuclear segmentation and classification that leverages the instance-rich information encoded within the vertical and horizontal distances of nuclear pixels to their centres of mass. These distances are then utilised to separate clustered nuclei, resulting in an accurate segmentation, particularly in areas with overlapping instances. Then, for each segmented instance the network predicts the type of nucleus via a devoted up-sampling branch. We demonstrate state-of-the-art performance compared to other methods on multiple independent multi-tissue histology image datasets. As part of this work, we introduce a new dataset of Haematoxylin & Eosin stained colorectal adenocarcinoma image tiles, containing 24,319 exhaustively annotated nuclei with associated class labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
11秒前
Tamako完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
深情安青应助无误采纳,获得10
12秒前
13秒前
发SCI完成签到,获得积分10
14秒前
Tamako发布了新的文献求助10
17秒前
19秒前
无误完成签到,获得积分10
21秒前
无误发布了新的文献求助10
23秒前
Tamako关注了科研通微信公众号
27秒前
111发布了新的文献求助10
37秒前
xjn完成签到,获得积分10
41秒前
橘子的海发布了新的文献求助10
47秒前
在学一会完成签到,获得积分10
1分钟前
qq完成签到 ,获得积分10
1分钟前
852应助33采纳,获得10
1分钟前
浮曳发布了新的文献求助10
1分钟前
Leoon完成签到 ,获得积分10
1分钟前
浮曳完成签到,获得积分10
1分钟前
1分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Donnie333完成签到,获得积分10
2分钟前
makabaka发布了新的文献求助10
2分钟前
忧郁的火车完成签到,获得积分10
2分钟前
2分钟前
多冰去糖发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463243
求助须知:如何正确求助?哪些是违规求助? 4567987
关于积分的说明 14312228
捐赠科研通 4493862
什么是DOI,文献DOI怎么找? 2461939
邀请新用户注册赠送积分活动 1450930
关于科研通互助平台的介绍 1426140