Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images

分割 数字化病理学 苏木精 人工智能 曙红 计算机科学 卷积神经网络 模式识别(心理学) 像素 深度学习 图像分割 计算机视觉 病理 医学 染色
作者
Simon Graham,Quoc Dang Vu,Shan E Ahmed Raza,Ayesha Azam,Yee Wah Tsang,Jin Tae Kwak,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:58: 101563-101563 被引量:937
标识
DOI:10.1016/j.media.2019.101563
摘要

Nuclear segmentation and classification within Haematoxylin & Eosin stained histology images is a fundamental prerequisite in the digital pathology work-flow. The development of automated methods for nuclear segmentation and classification enables the quantitative analysis of tens of thousands of nuclei within a whole-slide pathology image, opening up possibilities of further analysis of large-scale nuclear morphometry. However, automated nuclear segmentation and classification is faced with a major challenge in that there are several different types of nuclei, some of them exhibiting large intra-class variability such as the nuclei of tumour cells. Additionally, some of the nuclei are often clustered together. To address these challenges, we present a novel convolutional neural network for simultaneous nuclear segmentation and classification that leverages the instance-rich information encoded within the vertical and horizontal distances of nuclear pixels to their centres of mass. These distances are then utilised to separate clustered nuclei, resulting in an accurate segmentation, particularly in areas with overlapping instances. Then, for each segmented instance the network predicts the type of nucleus via a devoted up-sampling branch. We demonstrate state-of-the-art performance compared to other methods on multiple independent multi-tissue histology image datasets. As part of this work, we introduce a new dataset of Haematoxylin & Eosin stained colorectal adenocarcinoma image tiles, containing 24,319 exhaustively annotated nuclei with associated class labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄花发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
叮当完成签到,获得积分10
3秒前
恢复出厂设置完成签到 ,获得积分10
3秒前
3秒前
执着手套完成签到,获得积分10
3秒前
kkk发布了新的文献求助10
4秒前
lixin完成签到,获得积分10
4秒前
malubest发布了新的文献求助10
6秒前
杭啊发布了新的文献求助10
6秒前
xiaomili发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
JHL完成签到,获得积分10
7秒前
qq16发布了新的文献求助10
7秒前
Dotgene完成签到,获得积分10
7秒前
小芙爱雪碧完成签到 ,获得积分10
7秒前
7秒前
孙福禄应助quan采纳,获得10
8秒前
8秒前
Mzhao完成签到,获得积分10
9秒前
9秒前
9秒前
疯狂的虔完成签到,获得积分10
9秒前
11秒前
CipherSage应助右右采纳,获得10
11秒前
玉衡发布了新的文献求助10
11秒前
yao chen完成签到,获得积分10
11秒前
朵拉完成签到,获得积分10
11秒前
由清涟完成签到,获得积分10
12秒前
Drhan完成签到,获得积分10
12秒前
FashionBoy应助断数循环采纳,获得10
12秒前
姣妹崽完成签到,获得积分10
12秒前
马一凡完成签到,获得积分0
12秒前
上官若男应助lan199623采纳,获得10
13秒前
俗人完成签到,获得积分10
13秒前
cangye发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600