Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images

分割 数字化病理学 苏木精 人工智能 曙红 计算机科学 卷积神经网络 模式识别(心理学) 像素 深度学习 图像分割 计算机视觉 病理 医学 染色
作者
Simon Graham,Quoc Dang Vu,Shan E Ahmed Raza,Ayesha Azam,Yee Wah Tsang,Jin Tae Kwak,Nasir Rajpoot
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:58: 101563-101563 被引量:780
标识
DOI:10.1016/j.media.2019.101563
摘要

Nuclear segmentation and classification within Haematoxylin & Eosin stained histology images is a fundamental prerequisite in the digital pathology work-flow. The development of automated methods for nuclear segmentation and classification enables the quantitative analysis of tens of thousands of nuclei within a whole-slide pathology image, opening up possibilities of further analysis of large-scale nuclear morphometry. However, automated nuclear segmentation and classification is faced with a major challenge in that there are several different types of nuclei, some of them exhibiting large intra-class variability such as the nuclei of tumour cells. Additionally, some of the nuclei are often clustered together. To address these challenges, we present a novel convolutional neural network for simultaneous nuclear segmentation and classification that leverages the instance-rich information encoded within the vertical and horizontal distances of nuclear pixels to their centres of mass. These distances are then utilised to separate clustered nuclei, resulting in an accurate segmentation, particularly in areas with overlapping instances. Then, for each segmented instance the network predicts the type of nucleus via a devoted up-sampling branch. We demonstrate state-of-the-art performance compared to other methods on multiple independent multi-tissue histology image datasets. As part of this work, we introduce a new dataset of Haematoxylin & Eosin stained colorectal adenocarcinoma image tiles, containing 24,319 exhaustively annotated nuclei with associated class labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caiganyuhhh完成签到,获得积分10
1秒前
bkagyin应助lilililili采纳,获得10
1秒前
1秒前
2秒前
云月林生完成签到,获得积分10
2秒前
smor发布了新的文献求助10
2秒前
Catherine发布了新的文献求助10
2秒前
小赵发布了新的文献求助10
3秒前
4秒前
wujuan完成签到 ,获得积分10
6秒前
6秒前
小七发布了新的文献求助10
6秒前
zhaxiao发布了新的文献求助10
7秒前
7秒前
7秒前
完美书桃完成签到,获得积分10
8秒前
9秒前
10秒前
nn应助科学家采纳,获得10
10秒前
11秒前
酷波er应助二月水火采纳,获得10
11秒前
英姑应助苗条的紫文采纳,获得10
12秒前
12秒前
小石头发布了新的文献求助10
12秒前
北北完成签到,获得积分10
13秒前
H哈完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
大陈完成签到 ,获得积分10
14秒前
lilililili发布了新的文献求助10
15秒前
风未见的曾经完成签到,获得积分10
16秒前
17秒前
SunXP完成签到,获得积分10
17秒前
17秒前
18秒前
开心小肖乐关注了科研通微信公众号
18秒前
不吃湘菜发布了新的文献求助10
19秒前
JWonder完成签到,获得积分10
19秒前
笨笨球发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
Trace Fossils 1500
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685