血红素加氧酶
MAPK/ERK通路
化学
NF-κB
肿瘤坏死因子α
信号转导
脂多糖
p38丝裂原活化蛋白激酶
磷酸化
一氧化氮合酶
蛋白激酶A
细胞生物学
活性氧
一氧化氮
激酶
分子生物学
生物化学
药理学
血红素
生物
免疫学
酶
有机化学
作者
Jie Ren,Dan Su,Lixia Li,Heng Cai,Meiju Zhang,Jingchen Zhai,Minyue Li,Xinyue Wu,Kun Hu
标识
DOI:10.1016/j.taap.2019.114846
摘要
Aureusidin, a naturally-occurring flavonoid, is found in various plants of Cyperaceae such as Heleocharis dulcis (Burm. f.) Trin., but its pharmacological effect and active mechanism are rarely reported. This study aimed to investigate the anti-inflammatory effect and action mechanism of Aureusidin in LPS-induced mouse macrophage RAW264.7 cells. The results suggested that lipopolysaccharide (LPS)-induced nitric oxide (NO), tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) production were obviously inhibited by Aureusidin. Moreover, Aureusidin also significantly decreased the mRNA expression of various inflammatory factors in LPS-stimulated RAW264.7 cells. Furthermore, mechanistic studies showed that Aureusidin significantly inhibited nuclear transfer of nuclear factor-κB (NF-κB), while increasing the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) as well as expression of Nrf2 target genes such as heme oxygenase (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1), but the addition of the HO-1 inhibitor Sn-protoporphyrin (Snpp) significantly abolished the anti-inflammatory effect of Aureusidin in LPS-stimulated RAW264.7 cells, confirming the view that HO-1 was involved in the anti-inflammatory effect. In addition, Aureusidin increased the levels of reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) phosphorylation in RAW264.7 cells. Antioxidant N-acetylcysteine (NAC) or three MAPK inhibitors blocked the nuclear translocation of Nrf2 and HO-1 expression induced by Aureusidin, indicating that Aureusidin activated the Nrf2/HO-1 signaling pathway through ROS and MAPKs pathways. At the same time, co-treatment with the NAC blocked the phosphorylation of MAPKs. Results from molecular docking indicated that Aureusidin inhibited the NF-κB pathway by covalently binding to NF-κB. Thus, Aureusidin exerted the anti-inflammatory activity through blocking the NF-κB signaling pathways and activating the MAPKs and Nrf2/HO-1 signaling pathways. Based on the above results, Aureusidin may be an attractive therapeutic candidate for the inflammation-related diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI